Hyneter:Hybrid Network Transformer for Multiple Computer Vision Tasks

计算机科学 变压器 人工智能 电气工程 工程类 电压
作者
Dong Chen,Duoqian Miao,Xuerong Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 8773-8785 被引量:3
标识
DOI:10.1109/tii.2024.3367043
摘要

In this article, we point out that the essential differences between convolutional neural network (CNN)-based and transformer-based detectors, which cause worse performance of small object in transformer-based methods, are the gap between local information and global dependencies in feature extraction and propagation. To address these differences, we propose a new vision transformer, called Hybrid Network Transformer (Hyneter), after preexperiments that indicate the gap causes CNN-based and transformer-based methods to increase size-different objects results unevenly. Different from the divide-and-conquer strategy in previous methods, Hyneters consist of hybrid network backbone (HNB) and dual switching (DS) module, which integrate local information and global dependencies, and transfer them simultaneously. Based on the balance strategy, HNB extends the range of local information by embedding convolution layers into transformer blocks in parallel, and DS adjusts excessive reliance on global dependencies outside the patch. Ablation studies illustrate that Hyneters achieve the state-of-the-art performance by a large margin of $+2.1\sim 13.2 \text{AP}$ on COCO, and $+3.1\sim 6.5 \text{mIoU}$ on VisDrone with lighter model size and lower computational cost in object detection. Furthermore, Hyneters achieve the state-of-the-art results on multiple computer vision tasks, such as object detection ( $60.1 \text{AP}$ on COCO and $46.1 \text{AP}$ on VisDrone), semantic segmentation ( $54.3 \text{AP}$ on ADE20K), and instance segmentation ( $48.5 \text{AP}^{\text{mask}}$ on COCO), and surpass previous best methods. The code will be publicly available later.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官卿完成签到,获得积分20
刚刚
1秒前
1秒前
2秒前
Owen应助33采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
bc应助婷婷采纳,获得10
3秒前
3秒前
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
shenglll完成签到 ,获得积分10
4秒前
4秒前
4秒前
易安完成签到 ,获得积分10
4秒前
schen完成签到,获得积分10
5秒前
项南风发布了新的文献求助10
5秒前
科研通AI5应助Wangyn采纳,获得10
5秒前
qaswop发布了新的文献求助10
5秒前
5秒前
超级的千青完成签到 ,获得积分10
6秒前
Zxx完成签到,获得积分10
6秒前
6秒前
瘦瘦友儿发布了新的文献求助10
6秒前
kingwill应助小羊采纳,获得20
6秒前
通义千问发布了新的文献求助10
7秒前
白白关注了科研通微信公众号
7秒前
7秒前
kentomomota发布了新的文献求助10
7秒前
要减肥的chao完成签到,获得积分10
8秒前
8秒前
66发布了新的文献求助30
9秒前
9秒前
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002