Exploring evolutionary trajectories in ovarian cancer patients by longitudinal analysis of ctDNA

卵巢癌 肿瘤科 内科学 癌症 生物 进化生物学 医学
作者
Oliver Kutz,Stephan Drukewitz,Alexander Krüger,Daniela E. Aust,Doreen William,Sandra Oster,Evelin Schröck,Gustavo Baretton,Theresa Link,Pauline Wimberger,Jan Dominik Kuhlmann
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:62 (10): 2070-2081 被引量:2
标识
DOI:10.1515/cclm-2023-1266
摘要

Abstract Objectives We analysed whether temporal heterogeneity of ctDNA encodes evolutionary patterns in ovarian cancer. Methods Targeted sequencing of 275 cancer-associated genes was performed in a primary tumor biopsy and in ctDNA of six longitudinal plasma samples from 15 patients, using the Illumina platform. Results While there was low overall concordance between the mutational spectrum of the primary tumor biopsies vs. ctDNA, TP53 variants were the most commonly shared somatic alterations. Up to three variant clusters were detected in each tumor biopsy, likely representing predominant clones of the primary tumor, most of them harbouring a TP53 variant. By tracing these clusters in ctDNA, we propose that liquid biopsy may allow to assess the contribution of ancestral clones of the tumor to relapsed abdominal masses, revealing two evolutionary patterns. In pattern#1, clusters detected in the primary tumor biopsy were likely relapse seeding clones, as they contributed a major share to ctDNA at relapse. In pattern#2, similar clusters were present in tumors and ctDNA; however, they were entirely cleared from liquid biopsy after chemotherapy and were undetectable at relapse. ctDNA private variants were present among both patterns, with some of them mirroring subclonal expansions after chemotherapy. Conclusions We demonstrate that tracing the temporal heterogeneity of ctDNA, even below exome scale resolution, deciphers evolutionary trajectories in ovarian cancer. Furthermore, we describe two evolutionary patterns that may help to identify relapse seeding clones for targeted therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
corner发布了新的文献求助10
刚刚
1秒前
鹅帮逮发布了新的文献求助10
2秒前
高高完成签到 ,获得积分10
2秒前
洁净之柔完成签到,获得积分10
3秒前
懵懂的绿茶完成签到,获得积分20
4秒前
科研小陈完成签到,获得积分10
4秒前
CHENXIN532完成签到,获得积分10
4秒前
乐乐乐乐乐乐应助哈哈采纳,获得10
5秒前
5秒前
24完成签到 ,获得积分10
5秒前
LSi奇完成签到,获得积分10
6秒前
xiejuan完成签到,获得积分10
7秒前
一家人完成签到,获得积分0
7秒前
平常从蓉完成签到,获得积分10
7秒前
和平发展完成签到,获得积分10
8秒前
9秒前
天真的夜山完成签到,获得积分10
9秒前
秋秋完成签到,获得积分10
9秒前
Jasper应助美美采纳,获得10
9秒前
Singularity应助懵懂的绿茶采纳,获得10
10秒前
10秒前
个性凡儿完成签到,获得积分10
10秒前
理想三寻完成签到,获得积分10
10秒前
华仔应助黑粉头头采纳,获得10
12秒前
斯文的夜雪完成签到 ,获得积分10
12秒前
chiu_yy完成签到,获得积分10
13秒前
小贝壳要快乐吖完成签到,获得积分10
13秒前
学位论文发布了新的文献求助10
14秒前
Adler应助快帮我找找采纳,获得10
15秒前
strong.quite完成签到,获得积分10
16秒前
贝贝完成签到 ,获得积分10
16秒前
Yuksn完成签到,获得积分10
17秒前
风中的向卉完成签到 ,获得积分10
18秒前
海猫食堂完成签到,获得积分10
18秒前
晚晚完成签到 ,获得积分10
18秒前
王王完成签到,获得积分10
19秒前
小小邢完成签到 ,获得积分10
19秒前
Lucas应助小锅采纳,获得10
19秒前
ramu完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757