Exploring evolutionary trajectories in ovarian cancer patients by longitudinal analysis of ctDNA

卵巢癌 肿瘤科 内科学 癌症 生物 进化生物学 医学
作者
Oliver Kutz,Stephan Drukewitz,Alexander Krüger,Daniela E. Aust,Doreen William,Sandra Oster,Evelin Schröck,Gustavo Baretton,Theresa Link,Pauline Wimberger,Jan Dominik Kuhlmann
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:62 (10): 2070-2081 被引量:2
标识
DOI:10.1515/cclm-2023-1266
摘要

Abstract Objectives We analysed whether temporal heterogeneity of ctDNA encodes evolutionary patterns in ovarian cancer. Methods Targeted sequencing of 275 cancer-associated genes was performed in a primary tumor biopsy and in ctDNA of six longitudinal plasma samples from 15 patients, using the Illumina platform. Results While there was low overall concordance between the mutational spectrum of the primary tumor biopsies vs. ctDNA, TP53 variants were the most commonly shared somatic alterations. Up to three variant clusters were detected in each tumor biopsy, likely representing predominant clones of the primary tumor, most of them harbouring a TP53 variant. By tracing these clusters in ctDNA, we propose that liquid biopsy may allow to assess the contribution of ancestral clones of the tumor to relapsed abdominal masses, revealing two evolutionary patterns. In pattern#1, clusters detected in the primary tumor biopsy were likely relapse seeding clones, as they contributed a major share to ctDNA at relapse. In pattern#2, similar clusters were present in tumors and ctDNA; however, they were entirely cleared from liquid biopsy after chemotherapy and were undetectable at relapse. ctDNA private variants were present among both patterns, with some of them mirroring subclonal expansions after chemotherapy. Conclusions We demonstrate that tracing the temporal heterogeneity of ctDNA, even below exome scale resolution, deciphers evolutionary trajectories in ovarian cancer. Furthermore, we describe two evolutionary patterns that may help to identify relapse seeding clones for targeted therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0.5地板砖完成签到,获得积分10
刚刚
刚刚
StevenW完成签到,获得积分10
刚刚
nan完成签到,获得积分10
2秒前
老迟到的羊完成签到 ,获得积分10
3秒前
Orange应助Skywings采纳,获得30
4秒前
司空蓝完成签到,获得积分10
4秒前
wang完成签到,获得积分10
4秒前
双shuang完成签到,获得积分10
4秒前
wangchong完成签到 ,获得积分10
5秒前
chenlichan完成签到,获得积分10
6秒前
Jenny完成签到,获得积分10
7秒前
qsmei2020完成签到,获得积分10
10秒前
yt完成签到,获得积分10
11秒前
zcz完成签到 ,获得积分10
11秒前
Thunnus001完成签到,获得积分10
12秒前
撒玉完成签到,获得积分10
12秒前
Skywings完成签到,获得积分10
13秒前
格拉希尔完成签到,获得积分10
13秒前
Snowy完成签到,获得积分10
13秒前
rh完成签到,获得积分10
14秒前
14秒前
woshiwuziq完成签到 ,获得积分10
15秒前
求知的周完成签到,获得积分10
15秒前
广州东站完成签到,获得积分10
15秒前
熙梓日记完成签到,获得积分10
15秒前
跳跃山柳完成签到 ,获得积分10
15秒前
所所应助外向的含羞草采纳,获得10
17秒前
向雅完成签到,获得积分10
17秒前
任性的思远完成签到 ,获得积分10
17秒前
kma完成签到,获得积分10
17秒前
crave发布了新的文献求助10
18秒前
慕青应助Sylvia采纳,获得10
21秒前
秘小先儿完成签到,获得积分10
21秒前
disciple完成签到,获得积分10
21秒前
jzs完成签到 ,获得积分10
21秒前
小小怪酋长完成签到,获得积分10
21秒前
郭慧娜完成签到,获得积分10
22秒前
天行马完成签到,获得积分10
23秒前
静水流深完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245