Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors

石墨烯 材料科学 纳米技术 生物传感器 氧化物 场效应晶体管 化学气相沉积 晶体管 电气工程 电压 工程类 冶金
作者
Anastasiia Kudriavtseva,Stefan Jarić,Nikita Nekrasov,А. В. Орлов,Ivana Gadjanski,Ivan Bobrinetskiy,Petr I. Nikitin,Nikola Ž. Knežević
出处
期刊:Biosensors [MDPI AG]
卷期号:14 (5): 215-215 被引量:1
标识
DOI:10.3390/bios14050215
摘要

Graphene-based materials are actively being investigated as sensing elements for the detection of different analytes. Both graphene grown by chemical vapor deposition (CVD) and graphene oxide (GO) produced by the modified Hummers’ method are actively used in the development of biosensors. The production costs of CVD graphene- and GO-based sensors are similar; however, the question remains regarding the most efficient graphene-based material for the construction of point-of-care diagnostic devices. To this end, in this work, we compare CVD graphene aptasensors with the aptasensors based on reduced GO (rGO) for their capabilities in the detection of NT-proBNP, which serves as the gold standard biomarker for heart failure. Both types of aptasensors were developed using commercial gold interdigitated electrodes (IDEs) with either CVD graphene or GO formed on top as a channel of liquid-gated field-effect transistor (FET), yielding GFET and rGO-FET sensors, respectively. The functional properties of the two types of aptasensors were compared. Both demonstrate good dynamic range from 10 fg/mL to 100 pg/mL. The limit of detection for NT-proBNP in artificial saliva was 100 fg/mL and 1 pg/mL for rGO-FET- and GFET-based aptasensors, respectively. While CVD GFET demonstrates less variations in parameters, higher sensitivity was demonstrated by the rGO-FET due to its higher roughness and larger bandgap. The demonstrated low cost and scalability of technology for both types of graphene-based aptasensors may be applicable for the development of different graphene-based biosensors for rapid, stable, on-site, and highly sensitive detection of diverse biochemical markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小菜鸡完成签到,获得积分10
1秒前
少年发布了新的文献求助20
2秒前
卡他发布了新的文献求助10
2秒前
2秒前
Lucas应助Dovis采纳,获得10
3秒前
柴柴子应助阿艺采纳,获得20
3秒前
5秒前
雪兔妹妹完成签到 ,获得积分10
5秒前
mervynzcy完成签到,获得积分10
9秒前
keyz发布了新的文献求助10
10秒前
11秒前
幽默的香芦完成签到,获得积分20
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得30
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Y1234应助科研通管家采纳,获得10
13秒前
14秒前
vividkingking完成签到,获得积分10
14秒前
鬼见愁完成签到,获得积分10
14秒前
希望天下0贩的0应助卡他采纳,获得10
14秒前
压缩应助ytx采纳,获得10
15秒前
luckbaby发布了新的文献求助10
15秒前
Xiao发布了新的文献求助10
15秒前
李健的小迷弟应助皮代谷采纳,获得10
17秒前
18秒前
机灵的问萍完成签到,获得积分10
19秒前
20秒前
21秒前
巴达天使完成签到,获得积分10
21秒前
大模型应助HJJHJH采纳,获得30
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196