RNA干扰
生物
蚜虫
基因沉默
小RNA
核糖核酸
细胞生物学
细胞生长
基因
植物
遗传学
作者
Yuan Wang,Xuanlin Li,Chenghong Zhu,Shijie Yi,Yan Zhang,Zhi Hong
摘要
Abstract BACKGROUND Aphids (Hemiptera: Aphididae) are notorious sap‐sucking insects that rampantly threaten agricultural production worldwide. Current management against aphids in the field heavily relies on chemical pesticides, which makes economical and eco‐friendly methods urgently needed. Spray‐induced gene silencing (SIGS) offers a powerful and precise approach to pest management. However, the high costs and instability of double‐stranded RNA (dsRNA) regulators applied for downstream RNA interference (RNAi) still limit this strategy. It remains uncertain if RNAi regulators applied in SIGS could extend to small RNA (sRNA), especially miRNA. RESULTS We chose two sRNA sequences, miR‐9b and miR‐VgR, whose corresponding targets ABCG4 and VgR are both essential for aphid growth and development. The efficacy of these sequences was initially verified by chemically synthetic single‐stranded RNA (syn‐ssRNA). Through spray treatment, we observed a significantly decreased survival number and increased abnormality rate of green peach aphids fed on the host under laboratory conditions. Based on our previous study, we generated transgenic plants expressing artificial miR‐9b (amiR‐9b) and miR‐VgR (amiR‐VgR). Remarkably, plant‐derived amiRNA exerted potent and long‐lasting inhibitory efficacy with merely one percent concentration of chemical synthetics. Notably, the simultaneous application of amiR‐9b and amiR‐VgR exhibited superior inhibitory efficacy. CONCLUSION We explored the potential use of sRNA‐based biopesticide through SIGS while investigating the dosage requirements. To optimize this strategy, the utilization of plant‐derived amiRNA was proposed. The results suggested that attributed to stability and durability, deploying amiRNA in pest management is a potential and promising solution for the field application. © 2024 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI