Predictions for the ( n,2n ) reaction cross section based on a Bayesian neural network approach

算法 人工智能 数学 计算机科学
作者
Wenfei Li,Lan Liu,Zhong-Ming Niu,Y. Niu,X. L. Huang
出处
期刊:Physical Review C [American Physical Society]
卷期号:109 (4)
标识
DOI:10.1103/physrevc.109.044616
摘要

Nuclear $(n,2n)$ reaction cross sections are studied based on the Bayesian neural network (BNN) approach. Three physical quantities besides the proton and neutron numbers are proposed to improve the performance of the BNN approach. These three physical quantities are the incident neutron energy with respect to the reaction threshold, the physical quantity related to the odd-even effect, and the theoretical $(n,2n)$ reaction cross section, and they are included as the inputs to the neural network. The BNN approach has better performance in the description of the $(n,2n)$ reaction cross sections than the theoretical library TENDL-2021 calculated by the talys code based on the Hauser-Feshbach statistical model, especially for heavy nuclei. The root-mean-square deviation of the BNN approach with respect to the evaluation data is reduced to 0.10 barns compared to 0.25 barns of TENDL-2021. The extrapolation ability of the BNN approach is verified with the $(n,2n)$ cross section data that are not used to train the neural network. Furthermore, it is found that the BNN approach still well describes the trend of the $(n,2n)$ cross sections with the incident neutron energy predicted by TENDL-2021 even when extrapolated to the unknown region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulong发布了新的文献求助10
刚刚
2秒前
slow完成签到,获得积分20
3秒前
一滴水发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
8秒前
Ava应助yulong采纳,获得10
9秒前
9秒前
10秒前
10秒前
田様应助小笼包采纳,获得10
10秒前
11秒前
11秒前
泯珉发布了新的文献求助10
12秒前
adamchris发布了新的文献求助30
13秒前
工诩发布了新的文献求助10
14秒前
猪猪侠发布了新的文献求助10
14秒前
小熊发布了新的文献求助10
16秒前
ly完成签到,获得积分10
17秒前
酷炫迎波发布了新的文献求助10
17秒前
xzyin完成签到,获得积分10
17秒前
17秒前
19秒前
工诩完成签到,获得积分10
19秒前
20秒前
21秒前
安然完成签到 ,获得积分10
21秒前
小蘑菇应助wizard采纳,获得10
22秒前
蜗牛先生发布了新的文献求助20
22秒前
22秒前
23秒前
扎心发布了新的文献求助10
23秒前
24秒前
阿拉发布了新的文献求助10
24秒前
24秒前
充电宝应助tdtk采纳,获得10
24秒前
独特元蝶发布了新的文献求助10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111