Novel high-voltage GaN CAVET with high threshold voltage and low reverse conduction loss

欧姆接触 材料科学 肖特基二极管 阈值电压 肖特基势垒 光电子学 反向漏电流 电压 二极管 电气工程 纳米技术 工程类 晶体管 图层(电子)
作者
Chengtao Luo,Yang Cheng,Zhijia Zhao,Xintong Xie,Yuxi Wei,Jie Wei,Jingyu Shen,Jinpeng Qiu,Xiaorong Luo
标识
DOI:10.1016/j.mejo.2024.106195
摘要

A novel GaN current-aperture vertical electron transistor (CAVET) with an energy band pinning (EBP) structure (EBP-CAVET) is proposed and investigated by simulations. The EBP-CAVET is featured with hybrid contacts on the p-GaN layer, locally having Ohmic contact combined with Schottky gate metals in the longitudinal direction. The Ohmic contact is shorted to the source electrode and the Schottky gate metals are shorted to the gate electrode. The conduction band (Ec) in the gate region is modulated by the alternately arranged contacts. In the Ohmic contact region, Ec remains a fixed value, which acts as an energy band pinning and suppresses the variation of the Ec in the gate region. In the on-state (VGS > 0 V) and blocking-state with high VDS, the EBP structure inhibits the Ec shifting downwards in the gate region to achieve a high threshold voltage (Vth), a low leakage current density (Jdss), and a high breakdown voltage (BV). In the reverse conduction state (VDS < 0 V & VGS ≤ 0 V), the EBP structure suppresses the Ec shifting upwards to achieve a low and independent of gate bias reverse turn-on voltage (VRT). The proposed EBP-CAVET achieves a high Vth of 2.10 V, a VRT of 0.69 V, a low Jdss of 3.1 × 10−11 A/cm2 at VDS = 1000 V, a high BV of 1660 V. Compared with an integrated Schottky barrier diode or fin diode in a field effect transistor (FET), the EBP structure occupies a much smaller chip area. Thus, the EBP-CAVET achieves a low specific ON-resistance (Ron,sp) of 1.19 mΩ cm2 and an extremely high power-figure-of-merit (PFOM) up to 2.32 GW/cm2. Consequently, the proposed structure presents a new design concept and enhances the application potential for GaN CAVET with high Vth and low reverse conduction loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄少阳完成签到,获得积分20
刚刚
热情的远锋完成签到,获得积分10
刚刚
小马甲应助Honahlee采纳,获得10
刚刚
1秒前
1秒前
发嗲的怀蝶完成签到,获得积分20
1秒前
完美世界应助HL采纳,获得10
1秒前
1秒前
0128lun发布了新的文献求助10
1秒前
ggg完成签到,获得积分10
3秒前
3秒前
chen发布了新的文献求助10
4秒前
内向以彤完成签到,获得积分10
4秒前
笙歌发布了新的文献求助10
5秒前
Orange应助paleo-地质采纳,获得10
5秒前
残酷无情猫猫头完成签到,获得积分10
6秒前
6秒前
时刻保持质疑完成签到,获得积分10
6秒前
adi发布了新的文献求助10
6秒前
Limerence完成签到,获得积分10
6秒前
7秒前
7秒前
段采萱完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
Hello应助Liens采纳,获得10
10秒前
nightmare发布了新的文献求助10
12秒前
12秒前
12秒前
Jasper应助msf0073采纳,获得10
12秒前
ShawnJohn完成签到,获得积分10
13秒前
13秒前
雷锋发布了新的文献求助10
14秒前
14秒前
李洪星发布了新的文献求助10
14秒前
wanci应助乐观的颦采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836