A Typology of Social Media Use by Human Service Nonprofits: Mixed Methods Study

社会化媒体 主题分析 类型学 计算机科学 人工智能 人口 机器学习 知识管理 定性研究 万维网 社会学 社会科学 人口学 人类学
作者
Jia Xue,Micheal L. Shier,Junxiang Chen,Y Wang,Chengda Zheng,Chen Chen
出处
期刊:Journal of Medical Internet Research 卷期号:26: e51698-e51698
标识
DOI:10.2196/51698
摘要

Background Nonprofit organizations are increasingly using social media to improve their communication strategies with the broader population. However, within the domain of human service nonprofits, there is hesitancy to fully use social media tools, and there is limited scope among organizational personnel in applying their potential beyond self-promotion and service advertisement. There is a pressing need for greater conceptual clarity to support education and training on the varied reasons for using social media to increase organizational outcomes. Objective This study leverages the potential of Twitter (subsequently rebranded as X [X Corp]) to examine the online communication content within a sample (n=133) of nonprofit sexual assault (SA) centers in Canada. To achieve this, we developed a typology using a qualitative and supervised machine learning model for the automatic classification of tweets posted by these centers. Methods Using a mixed methods approach that combines machine learning and qualitative analysis, we manually coded 10,809 tweets from 133 SA centers in Canada, spanning the period from March 2009 to March 2023. These manually labeled tweets were used as the training data set for the supervised machine learning process, which allowed us to classify 286,551 organizational tweets. The classification model based on supervised machine learning yielded satisfactory results, prompting the use of unsupervised machine learning to classify the topics within each thematic category and identify latent topics. The qualitative thematic analysis, in combination with topic modeling, provided a contextual understanding of each theme. Sentiment analysis was conducted to reveal the emotions conveyed in the tweets. We conducted validation of the model with 2 independent data sets. Results Manual annotation of 10,809 tweets identified seven thematic categories: (1) community engagement, (2) organization administration, (3) public awareness, (4) political advocacy, (5) support for others, (6) partnerships, and (7) appreciation. Organization administration was the most frequent segment, and political advocacy and partnerships were the smallest segments. The supervised machine learning model achieved an accuracy of 63.4% in classifying tweets. The sentiment analysis revealed a prevalence of neutral sentiment across all categories. The emotion analysis indicated that fear was predominant, whereas joy was associated with the partnership and appreciation tweets. Topic modeling identified distinct themes within each category, providing valuable insights into the prevalent discussions surrounding SA and related issues. Conclusions This research contributes an original theoretical model that sheds light on how human service nonprofits use social media to achieve their online organizational communication objectives across 7 thematic categories. The study advances our comprehension of social media use by nonprofits, presenting a comprehensive typology that captures the diverse communication objectives and contents of these organizations, which provide content to expand training and education for nonprofit leaders to connect and engage with the public, policy experts, other organizations, and potential service users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好好发布了新的文献求助10
1秒前
852应助咚咚01050228采纳,获得10
2秒前
懂得珍惜完成签到,获得积分20
2秒前
平常映梦发布了新的文献求助10
2秒前
3秒前
wxiao发布了新的文献求助10
3秒前
罗小黑完成签到,获得积分10
4秒前
4秒前
5秒前
南瓜完成签到,获得积分10
5秒前
hello_25baby完成签到,获得积分10
6秒前
罗小黑发布了新的文献求助10
8秒前
懂得珍惜发布了新的文献求助10
9秒前
9秒前
9秒前
糯米椰发布了新的文献求助10
9秒前
10秒前
或早或晚关注了科研通微信公众号
11秒前
tuanheqi应助yichun采纳,获得30
11秒前
SEVEN完成签到 ,获得积分10
12秒前
852应助V入门采纳,获得10
13秒前
咚咚01050228给咚咚01050228的求助进行了留言
13秒前
14秒前
小柴乖乖发布了新的文献求助10
15秒前
qmanastasia完成签到,获得积分10
16秒前
lilili6666完成签到,获得积分10
18秒前
神经脊柱与周围神经完成签到,获得积分10
19秒前
19秒前
19秒前
思源应助在远方采纳,获得10
22秒前
22秒前
22秒前
sasasa发布了新的文献求助10
24秒前
毛豆爸爸应助毓汐采纳,获得10
24秒前
hope应助毓汐采纳,获得10
24秒前
lalala发布了新的文献求助10
24秒前
糯米椰完成签到,获得积分10
25秒前
小炸日记发布了新的文献求助10
25秒前
晚安完成签到,获得积分20
25秒前
绿豆糕ovo发布了新的文献求助10
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343625
求助须知:如何正确求助?哪些是违规求助? 2970630
关于积分的说明 8644716
捐赠科研通 2650766
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569