钙钛矿(结构)
光伏系统
带隙
材料科学
表面改性
光电子学
纳米技术
工程物理
化学
物理
结晶学
电气工程
物理化学
工程类
作者
Xuzhi Hu,Fang Yao,Chen Wang,Hongsen Cui,Peng Jia,Shengjie Du,Shun Zhou,Hongling Guan,Qianqian Lin,Weijun Ke,Chen Tao,Guojia Fang
标识
DOI:10.1016/j.cej.2024.151379
摘要
As an essential light-absorbing material in perovskite-based in tandem solar cells, wide-bandgap (WBG) perovskite has garnered extensive attention. Nevertheless, due to severe non-radiative recombination from tail states, as well as photoinduced phase segregation and unoptimized charge transfer, WBG perovskite solar cells (PSCs) typically display significant open-circuit voltage (VOC) losses and low fill factor (FF). In this work, we report to modify the 1.68 eV bandgap perovskite film upon optimized surface passivation with 1,3-propane-diammonium iodide (PDAI2). Time-resolved microwave conductivity measurement is employed to analyze the tail states, mobilities of charge carriers and the rate constants of recombination in perovskite films. The results indicate that the optimized surface modification strategy not only enhances film quality, boosts carrier transport, but also suppresses tail states and therefore diminishes non-radiative recombination, consequently elevating the VOC and FF of the device. Hence, the PDAI2-assisted WBG PSCs deliver an optimal efficiency of 21.48 %, accompanied by a VOC of 1.243 V. Furthermore, the integration of a narrow-bandgap tin–lead PSC with a semi-transparent WBG PSC results in a four-terminal perovskite/perovskite tandem solar cell, showcasing an efficiency surpassing 28 %. Our research offers a practical approach for producing efficient WBG PSCs and tandem solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI