Boron Nitride Nanotube-Aligned Electrospun PVDF Nanofiber-Based Composite Films Applicable to Wearable Piezoelectric Sensors

材料科学 氮化硼 聚偏氟乙烯 纳米纤维 复合材料 极限抗拉强度 静电纺丝 纳米复合材料 吸水率 复合数 压电 聚合物 化学工程 工程类
作者
Numan Yanar,T. Kim,Jung‐Hwan Jung,Duy Khoe Dinh,Ki-In Choi,Arni M. Pornea,Dolly Yadav,Zahid Hanif,Eunkwang Park,Jae Woo Kim
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (10): 11715-11726 被引量:2
标识
DOI:10.1021/acsanm.4c01296
摘要

In this research, piezoelectric and heat-dissipating boron nitride nanotube (BNNT)/polyvinylidene fluoride (PVDF) nanocomposite thin films having superior properties for wearable sensing applications are introduced. Neat and 2.5 wt % (BNNT2.5)- and 5.0 wt % BNNT (BNNT5.0)-embedded PVDF thin films were prepared by first producing gel-like electrospun nanofibers followed by hot-rolling, respectively. The piezoelectric performance of BNNT5.0 was as high as 128.0 ± 5.4 mV under 300 kPa, while Neat and BNNT2.5 showed 9.9 ± 0.1 and 22.7 ± 8.8 mV, respectively. Furthermore, BNNT2.5 also presents almost 9 times and BNNT5.0 presents more than 3 times higher thermal conductivities of 0.89 ± 0.40 and 0.32 ± 0.10 W/mK, respectively, compared to Neat (0.10 ± 0.01 W/mK) and both present very high thermal resistance with no phase change up to 180 °C and less than 4% shrinkage even at 200 °C, while Neat begins melting at 120 °C. BNNT2.5 and BNNT5 showed a high water-repelling property and mechanical strength as well. Tensile strengths and elongation for BNNT2.5 and BNNT5.0 were 18.1 MPa with 52.1% and 21.2 MPa and 34.0%, respectively. They both showed a low moisture absorption property with high water repellence with stable and hydrophobic water contact angles (92.2° with only 0.4° change for BNNT2.5 and 103.6° with 2.4° change for BNNT5.0 in 30 s), while Neat was in the hydrophilic region. Consequently, BNNT/PVDF films with highly enhanced piezoelectric-sensing and heat-dissipating properties and mechanical, thermal, and moisture resistance can be applicable for various wearable sensing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助柯南采纳,获得10
1秒前
陀思妥耶夫斯基完成签到 ,获得积分10
1秒前
july完成签到,获得积分10
1秒前
nobody完成签到,获得积分10
2秒前
柯幼萱完成签到 ,获得积分10
2秒前
小肆完成签到 ,获得积分10
3秒前
完美世界应助张菲茜采纳,获得10
3秒前
眯眯眼的鞋垫完成签到,获得积分10
3秒前
拼搏向上完成签到,获得积分10
3秒前
神勇初瑶完成签到,获得积分10
3秒前
zfczfc发布了新的文献求助10
4秒前
4秒前
bkagyin应助灿烂千阳采纳,获得10
4秒前
小杨完成签到,获得积分10
4秒前
4秒前
华仔应助小薛采纳,获得30
4秒前
18746005898完成签到 ,获得积分10
4秒前
tooy完成签到 ,获得积分10
4秒前
4秒前
xxaqs完成签到,获得积分10
4秒前
kyt发布了新的文献求助10
5秒前
张炎完成签到,获得积分0
5秒前
暮霭沉沉应助SYMI采纳,获得10
5秒前
火山蜗牛发布了新的文献求助10
5秒前
礼成完成签到,获得积分20
5秒前
8秒前
Andy发布了新的文献求助10
8秒前
友好电话发布了新的文献求助10
9秒前
JrPaleo101完成签到,获得积分20
11秒前
千空应助夏夏采纳,获得10
11秒前
lym2021完成签到,获得积分20
13秒前
13秒前
14秒前
lilyz615完成签到,获得积分10
15秒前
15秒前
瞿思烟发布了新的文献求助10
15秒前
boyeer发布了新的文献求助10
15秒前
务实的数据线完成签到,获得积分10
15秒前
16秒前
我是老大应助Ch采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064