An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis

自编码 降维 替代模型 深度学习 维数(图论) 人工神经网络 人工智能 还原(数学) 可靠性(半导体) 计算机科学 高斯分布 极限(数学) 尺寸缩减 采样(信号处理) 机器学习 数据挖掘 数学 物理 纯数学 量子力学 几何学 功率(物理) 数学分析 滤波器(信号处理) 数学物理 计算机视觉
作者
Yuequan Bao,Huabin Sun,Xiaoshu Guan,Yuxuan Tian
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:247: 110140-110140 被引量:5
标识
DOI:10.1016/j.ress.2024.110140
摘要

Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this challenge, surrogate model methods are frequently employed. One way to improve the efficiency of surrogate model methods involves selecting informative samples that significantly enhance the accuracy of the surrogate model. This paper introduces a novel approach to facilitate the construction of surrogate models and selection of informative samples in high-dimensional reliability analysis, through an active learning method based on a deep adversarial autoencoder-based sufficient dimension reduction (AAE-SDR) neural network. The AAE-SDR neural network serves as a surrogate model, transforming complex high-dimensional variables into tractable, low-dimensional embeddings relevant to the target. These embeddings are Gaussian-distributed with a distinct latent limit state boundary. A new sampling strategy is proposed to select informative misclassified samples by iteratively identifying candidate samples near the latent limit state boundary and uniformly sampling from the candidate sample dataset based on the latent Gaussian distribution. The effectiveness of the proposed approach is demonstrated through two high-dimensional numerical examples and a cable-stayed bridge case study. Results show that the proposed method simplifies complex high-dimensional reliability problems and provides a relatively accurate estimated failure probability with a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
游大达发布了新的文献求助10
刚刚
1秒前
huoo完成签到,获得积分10
1秒前
1秒前
典雅问寒完成签到,获得积分0
2秒前
orixero应助善良的冷梅采纳,获得10
2秒前
呼呼大睡完成签到,获得积分10
2秒前
直率青亦发布了新的文献求助10
3秒前
an发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
wos完成签到,获得积分10
3秒前
shisanjie发布了新的文献求助10
3秒前
无极微光应助清塵采纳,获得20
4秒前
4秒前
yumi完成签到 ,获得积分10
4秒前
4秒前
GL完成签到,获得积分10
4秒前
沐沐完成签到,获得积分10
4秒前
4秒前
彭于晏应助雾梦采纳,获得10
4秒前
wanci应助rorolinlin采纳,获得10
4秒前
浮游应助zoeeeey采纳,获得10
5秒前
7秒前
7秒前
zyzoo发布了新的文献求助10
7秒前
董绮敏发布了新的文献求助10
8秒前
8秒前
8秒前
万坤完成签到,获得积分10
8秒前
9秒前
ruanyh完成签到,获得积分10
9秒前
幼兰呆鹅完成签到,获得积分10
9秒前
YANYAN完成签到,获得积分10
9秒前
dr.du完成签到 ,获得积分10
9秒前
wyl完成签到,获得积分20
9秒前
耍酷的花卷完成签到 ,获得积分10
9秒前
帅气的plum发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238818
求助须知:如何正确求助?哪些是违规求助? 4406474
关于积分的说明 13714044
捐赠科研通 4274861
什么是DOI,文献DOI怎么找? 2345780
邀请新用户注册赠送积分活动 1342825
关于科研通互助平台的介绍 1300786