An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis

自编码 降维 替代模型 深度学习 维数(图论) 人工神经网络 人工智能 还原(数学) 可靠性(半导体) 计算机科学 高斯分布 极限(数学) 尺寸缩减 采样(信号处理) 机器学习 数据挖掘 数学 物理 纯数学 量子力学 几何学 功率(物理) 数学分析 滤波器(信号处理) 数学物理 计算机视觉
作者
Yuequan Bao,Huabin Sun,Xiaoshu Guan,Yuxuan Tian
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:247: 110140-110140 被引量:5
标识
DOI:10.1016/j.ress.2024.110140
摘要

Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this challenge, surrogate model methods are frequently employed. One way to improve the efficiency of surrogate model methods involves selecting informative samples that significantly enhance the accuracy of the surrogate model. This paper introduces a novel approach to facilitate the construction of surrogate models and selection of informative samples in high-dimensional reliability analysis, through an active learning method based on a deep adversarial autoencoder-based sufficient dimension reduction (AAE-SDR) neural network. The AAE-SDR neural network serves as a surrogate model, transforming complex high-dimensional variables into tractable, low-dimensional embeddings relevant to the target. These embeddings are Gaussian-distributed with a distinct latent limit state boundary. A new sampling strategy is proposed to select informative misclassified samples by iteratively identifying candidate samples near the latent limit state boundary and uniformly sampling from the candidate sample dataset based on the latent Gaussian distribution. The effectiveness of the proposed approach is demonstrated through two high-dimensional numerical examples and a cable-stayed bridge case study. Results show that the proposed method simplifies complex high-dimensional reliability problems and provides a relatively accurate estimated failure probability with a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey发布了新的文献求助10
刚刚
墨与笙完成签到,获得积分10
刚刚
科研小白发布了新的文献求助10
刚刚
胖大海发布了新的文献求助10
1秒前
1秒前
墨墨发布了新的文献求助10
1秒前
1秒前
..完成签到 ,获得积分10
3秒前
王sy完成签到 ,获得积分10
3秒前
clihye完成签到 ,获得积分10
3秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
5秒前
浮游应助yuzhi采纳,获得10
6秒前
科目三应助苹果亦云采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助AamirAli采纳,获得30
8秒前
摇一摇发布了新的文献求助10
8秒前
8秒前
脑洞疼应助ce采纳,获得10
8秒前
墨墨完成签到,获得积分10
9秒前
现代的bb完成签到,获得积分10
9秒前
tenta完成签到,获得积分10
9秒前
小马甲应助空谷新苗采纳,获得10
10秒前
怡然的怜烟应助橘子采纳,获得30
10秒前
无有发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
科目三应助椰子采纳,获得10
11秒前
11秒前
12秒前
果粒陈发布了新的文献求助10
13秒前
13秒前
英俊的铭应助lele采纳,获得10
14秒前
脑洞疼应助Luo采纳,获得10
15秒前
15秒前
16秒前
无有完成签到,获得积分10
17秒前
17秒前
17秒前
秀丽的天奇完成签到,获得积分10
18秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593