An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis

自编码 降维 替代模型 深度学习 维数(图论) 人工神经网络 人工智能 还原(数学) 可靠性(半导体) 计算机科学 高斯分布 极限(数学) 尺寸缩减 采样(信号处理) 机器学习 数据挖掘 数学 物理 纯数学 量子力学 几何学 功率(物理) 数学分析 滤波器(信号处理) 数学物理 计算机视觉
作者
Yuequan Bao,Huabin Sun,Xiaoshu Guan,Yuxuan Tian
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:247: 110140-110140 被引量:5
标识
DOI:10.1016/j.ress.2024.110140
摘要

Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this challenge, surrogate model methods are frequently employed. One way to improve the efficiency of surrogate model methods involves selecting informative samples that significantly enhance the accuracy of the surrogate model. This paper introduces a novel approach to facilitate the construction of surrogate models and selection of informative samples in high-dimensional reliability analysis, through an active learning method based on a deep adversarial autoencoder-based sufficient dimension reduction (AAE-SDR) neural network. The AAE-SDR neural network serves as a surrogate model, transforming complex high-dimensional variables into tractable, low-dimensional embeddings relevant to the target. These embeddings are Gaussian-distributed with a distinct latent limit state boundary. A new sampling strategy is proposed to select informative misclassified samples by iteratively identifying candidate samples near the latent limit state boundary and uniformly sampling from the candidate sample dataset based on the latent Gaussian distribution. The effectiveness of the proposed approach is demonstrated through two high-dimensional numerical examples and a cable-stayed bridge case study. Results show that the proposed method simplifies complex high-dimensional reliability problems and provides a relatively accurate estimated failure probability with a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助乐观的鸽子采纳,获得10
1秒前
萧狗子发布了新的文献求助10
1秒前
苦短发布了新的文献求助10
3秒前
cfplrbs完成签到,获得积分20
4秒前
7秒前
文静的绯完成签到,获得积分10
11秒前
万能图书馆应助thz采纳,获得10
12秒前
憨憨完成签到,获得积分10
13秒前
OLIVIA完成签到,获得积分10
13秒前
14秒前
wanci应助hh采纳,获得10
14秒前
14秒前
15秒前
hr完成签到 ,获得积分10
17秒前
小蘑菇应助sanjin采纳,获得10
17秒前
感动城发布了新的文献求助10
18秒前
ding应助112我的采纳,获得10
19秒前
19秒前
肘汁派发布了新的文献求助10
19秒前
19秒前
20秒前
留意完成签到,获得积分10
21秒前
Starry完成签到 ,获得积分10
21秒前
乔婉发布了新的文献求助10
21秒前
thz发布了新的文献求助10
23秒前
23秒前
乐观的鸽子完成签到,获得积分10
24秒前
Cashwa完成签到,获得积分10
24秒前
jinzhou发布了新的文献求助10
24秒前
oxs发布了新的文献求助10
24秒前
放青松完成签到,获得积分10
25秒前
25秒前
Chen完成签到,获得积分10
25秒前
27秒前
思源应助愉快的烤鸡采纳,获得10
27秒前
肘汁派完成签到,获得积分10
27秒前
陳拾壹完成签到,获得积分10
27秒前
金元宝完成签到,获得积分10
28秒前
vvcat关注了科研通微信公众号
28秒前
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456751
求助须知:如何正确求助?哪些是违规求助? 4563362
关于积分的说明 14289575
捐赠科研通 4487973
什么是DOI,文献DOI怎么找? 2458113
邀请新用户注册赠送积分活动 1448473
关于科研通互助平台的介绍 1424128