An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis

自编码 降维 替代模型 深度学习 维数(图论) 人工神经网络 人工智能 还原(数学) 可靠性(半导体) 计算机科学 高斯分布 极限(数学) 尺寸缩减 采样(信号处理) 机器学习 数据挖掘 数学 物理 滤波器(信号处理) 量子力学 数学分析 数学物理 功率(物理) 计算机视觉 纯数学 几何学
作者
Yuequan Bao,Huabin Sun,Xiaoshu Guan,Yuxuan Tian
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:247: 110140-110140 被引量:5
标识
DOI:10.1016/j.ress.2024.110140
摘要

Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this challenge, surrogate model methods are frequently employed. One way to improve the efficiency of surrogate model methods involves selecting informative samples that significantly enhance the accuracy of the surrogate model. This paper introduces a novel approach to facilitate the construction of surrogate models and selection of informative samples in high-dimensional reliability analysis, through an active learning method based on a deep adversarial autoencoder-based sufficient dimension reduction (AAE-SDR) neural network. The AAE-SDR neural network serves as a surrogate model, transforming complex high-dimensional variables into tractable, low-dimensional embeddings relevant to the target. These embeddings are Gaussian-distributed with a distinct latent limit state boundary. A new sampling strategy is proposed to select informative misclassified samples by iteratively identifying candidate samples near the latent limit state boundary and uniformly sampling from the candidate sample dataset based on the latent Gaussian distribution. The effectiveness of the proposed approach is demonstrated through two high-dimensional numerical examples and a cable-stayed bridge case study. Results show that the proposed method simplifies complex high-dimensional reliability problems and provides a relatively accurate estimated failure probability with a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor_Peng完成签到,获得积分10
1秒前
2秒前
刻苦的班完成签到,获得积分20
2秒前
科研通AI2S应助海绵宝宝采纳,获得10
4秒前
肉多发布了新的文献求助10
5秒前
6秒前
Canoe完成签到,获得积分20
7秒前
共享精神应助顾北采纳,获得30
8秒前
caishij完成签到,获得积分10
9秒前
多情的如冰完成签到 ,获得积分10
9秒前
NexusExplorer应助称心的魔镜采纳,获得10
9秒前
10秒前
浮游应助Chara_kara采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
希望天下0贩的0应助6666666采纳,获得10
14秒前
科研通AI6应助明白放弃采纳,获得80
14秒前
14秒前
所所应助yw采纳,获得10
14秒前
16秒前
哎嘤斯坦发布了新的文献求助10
16秒前
16秒前
小骄傲完成签到,获得积分10
17秒前
雾海发布了新的文献求助10
17秒前
18秒前
蒙蒙完成签到,获得积分20
18秒前
tq给tq的求助进行了留言
20秒前
蒙蒙发布了新的文献求助10
21秒前
十三发布了新的文献求助10
21秒前
23秒前
哎嘤斯坦完成签到,获得积分10
24秒前
Orange应助麦苗果果采纳,获得10
24秒前
25秒前
orixero应助拉拉采纳,获得10
26秒前
27秒前
英俊小猫咪关注了科研通微信公众号
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439