SLE diagnosis research based on SERS combined with a multi-modal fusion method

人工智能 融合 计算机科学 模式识别(心理学) 灵敏度(控制系统) 残余物 拉曼散射 拉曼光谱 信号(编程语言) 医学诊断 生物医学 传感器融合 机器学习 算法 生物信息学 电子工程 医学 光学 工程类 物理 病理 哲学 语言学 生物 程序设计语言
作者
Yuhao Huang,Chen Chen,Chenjie Chang,Zhiyuan Cheng,Yang Liu,Xuehua Wang,Cheng Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:315: 124296-124296
标识
DOI:10.1016/j.saa.2024.124296
摘要

As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical application of Raman spectroscopy in clinical settings. However, for systemic lupus erythematosus (SLE), origin Raman spectral data (ORS) have relatively weak signals, making it challenging to obtain ideal classification results. Although the surface enhancement technique can enhance the scattering signal of Raman spectroscopic data, the sensitivity of the SERS substrate to airborne impurities and the inhomogeneous distribution of hotspots degrade part of the signal. To fully utilize both kinds of data, this paper proposes a two-branch residual-attention network (DBRAN) fusion technique, which allows the ORS to complement the degraded portion and thus improve the model's classification accuracy. The features are extracted using the residual module, which retains the original features while extracting the deep features. At the same time, the study incorporates the attention module in both the upper and lower branches to handle the weight allocation of the two modal features more efficiently. The experimental results demonstrate that both the low-level fusion method and the intermediate-level fusion method can significantly improve the diagnostic accuracy of SLE disease classification compared with a single modality, in which the intermediate-level fusion of DBRAN achieves 100% classification accuracy, sensitivity, and specificity. The accuracy is improved by 10% and 7% compared with the ORS unimodal and the SERS unimodal modalities, respectively. The experiment, by fusing the multimodal spectral, realized rapid diagnosis of SLE disease by fusing multimodal spectral data, which provides a reference idea in the field of Raman spectroscopy and can be further promoted to clinical practical applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业完成签到 ,获得积分10
刚刚
GGZ发布了新的文献求助10
1秒前
笑笑发布了新的文献求助10
1秒前
轻松致远完成签到 ,获得积分10
1秒前
1秒前
现实的曼荷给现实的曼荷的求助进行了留言
1秒前
沈随便完成签到,获得积分10
2秒前
2秒前
2秒前
风中的海雪完成签到,获得积分10
3秒前
CucRuotThua完成签到,获得积分10
3秒前
QQ完成签到,获得积分10
3秒前
这个论文非写不可完成签到,获得积分10
3秒前
4秒前
ZZZpp发布了新的文献求助10
4秒前
4秒前
易伊澤发布了新的文献求助10
4秒前
饱满小兔子完成签到,获得积分10
5秒前
5秒前
共享精神应助phz采纳,获得10
6秒前
喵了个咪完成签到 ,获得积分10
6秒前
科研通AI5应助俭朴夜雪采纳,获得10
6秒前
6秒前
頑皮燕姿完成签到,获得积分10
6秒前
6秒前
丁德乐可发布了新的文献求助10
7秒前
Minkslion完成签到,获得积分10
7秒前
於松完成签到,获得积分10
7秒前
7秒前
yyyy发布了新的文献求助10
8秒前
稳重无剑完成签到,获得积分10
9秒前
wuha完成签到,获得积分10
9秒前
9秒前
欢喜从霜完成签到,获得积分10
10秒前
Orange应助LiShin采纳,获得10
10秒前
10秒前
欣慰友梅完成签到,获得积分10
10秒前
11秒前
llllllll发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762