已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SLE diagnosis research based on SERS combined with a multi-modal fusion method

人工智能 融合 计算机科学 模式识别(心理学) 灵敏度(控制系统) 残余物 拉曼散射 拉曼光谱 信号(编程语言) 医学诊断 生物医学 传感器融合 机器学习 算法 生物信息学 电子工程 医学 光学 工程类 物理 病理 哲学 语言学 生物 程序设计语言
作者
Yuhao Huang,Chen Chen,Chenjie Chang,Zhiyuan Cheng,Yang Liu,Xuehua Wang,Cheng Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:315: 124296-124296
标识
DOI:10.1016/j.saa.2024.124296
摘要

As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical application of Raman spectroscopy in clinical settings. However, for systemic lupus erythematosus (SLE), origin Raman spectral data (ORS) have relatively weak signals, making it challenging to obtain ideal classification results. Although the surface enhancement technique can enhance the scattering signal of Raman spectroscopic data, the sensitivity of the SERS substrate to airborne impurities and the inhomogeneous distribution of hotspots degrade part of the signal. To fully utilize both kinds of data, this paper proposes a two-branch residual-attention network (DBRAN) fusion technique, which allows the ORS to complement the degraded portion and thus improve the model's classification accuracy. The features are extracted using the residual module, which retains the original features while extracting the deep features. At the same time, the study incorporates the attention module in both the upper and lower branches to handle the weight allocation of the two modal features more efficiently. The experimental results demonstrate that both the low-level fusion method and the intermediate-level fusion method can significantly improve the diagnostic accuracy of SLE disease classification compared with a single modality, in which the intermediate-level fusion of DBRAN achieves 100% classification accuracy, sensitivity, and specificity. The accuracy is improved by 10% and 7% compared with the ORS unimodal and the SERS unimodal modalities, respectively. The experiment, by fusing the multimodal spectral, realized rapid diagnosis of SLE disease by fusing multimodal spectral data, which provides a reference idea in the field of Raman spectroscopy and can be further promoted to clinical practical applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助129600采纳,获得10
1秒前
月Y发布了新的文献求助10
3秒前
HGBG2000发布了新的文献求助10
3秒前
jumao1999发布了新的文献求助10
3秒前
飘逸惠完成签到,获得积分10
6秒前
黄金回旋完成签到,获得积分10
6秒前
7秒前
大模型应助娄心昊采纳,获得10
7秒前
8秒前
人皇发布了新的文献求助10
8秒前
雅典的宠儿完成签到 ,获得积分10
9秒前
10秒前
大瓜完成签到,获得积分20
11秒前
11秒前
金沐栋发布了新的文献求助10
11秒前
ceeray23发布了新的文献求助20
12秒前
14秒前
桐桐应助浮浮世世采纳,获得10
14秒前
鸽子侠发布了新的文献求助10
15秒前
16秒前
传奇3应助HGBG2000采纳,获得10
18秒前
朱明完成签到 ,获得积分10
19秒前
合适的初蓝完成签到 ,获得积分10
19秒前
李健的小迷弟应助刘冬晴采纳,获得10
19秒前
koi完成签到 ,获得积分10
19秒前
浮游应助起起采纳,获得10
19秒前
李小小完成签到,获得积分10
23秒前
李妍妍完成签到,获得积分20
23秒前
苏苏发布了新的文献求助10
24秒前
知意关注了科研通微信公众号
25秒前
轻松雨旋完成签到 ,获得积分10
26秒前
嘟嘟完成签到 ,获得积分10
29秒前
31秒前
111完成签到 ,获得积分10
33秒前
重要问芙brk完成签到,获得积分10
35秒前
35秒前
徐婷完成签到 ,获得积分10
36秒前
知意发布了新的文献求助10
37秒前
斯文败类应助裴裴采纳,获得10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476168
求助须知:如何正确求助?哪些是违规求助? 4577712
关于积分的说明 14362884
捐赠科研通 4505728
什么是DOI,文献DOI怎么找? 2468776
邀请新用户注册赠送积分活动 1456424
关于科研通互助平台的介绍 1430092