SLE diagnosis research based on SERS combined with a multi-modal fusion method

人工智能 融合 计算机科学 模式识别(心理学) 灵敏度(控制系统) 残余物 拉曼散射 拉曼光谱 信号(编程语言) 医学诊断 生物医学 传感器融合 机器学习 算法 生物信息学 电子工程 医学 光学 工程类 物理 病理 哲学 语言学 生物 程序设计语言
作者
Yuhao Huang,Chen Chen,Chenjie Chang,Zhiyuan Cheng,Liu Yang,Xuehua Wang,Cheng Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:315: 124296-124296
标识
DOI:10.1016/j.saa.2024.124296
摘要

As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical application of Raman spectroscopy in clinical settings. However, for systemic lupus erythematosus (SLE), origin Raman spectral data (ORS) have relatively weak signals, making it challenging to obtain ideal classification results. Although the surface enhancement technique can enhance the scattering signal of Raman spectroscopic data, the sensitivity of the SERS substrate to airborne impurities and the inhomogeneous distribution of hotspots degrade part of the signal. To fully utilize both kinds of data, this paper proposes a two-branch residual-attention network (DBRAN) fusion technique, which allows the ORS to complement the degraded portion and thus improve the model's classification accuracy. The features are extracted using the residual module, which retains the original features while extracting the deep features. At the same time, the study incorporates the attention module in both the upper and lower branches to handle the weight allocation of the two modal features more efficiently. The experimental results demonstrate that both the low-level fusion method and the intermediate-level fusion method can significantly improve the diagnostic accuracy of SLE disease classification compared with a single modality, in which the intermediate-level fusion of DBRAN achieves 100% classification accuracy, sensitivity, and specificity. The accuracy is improved by 10% and 7% compared with the ORS unimodal and the SERS unimodal modalities, respectively. The experiment, by fusing the multimodal spectral, realized rapid diagnosis of SLE disease by fusing multimodal spectral data, which provides a reference idea in the field of Raman spectroscopy and can be further promoted to clinical practical applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
会积极发布了新的文献求助10
2秒前
Sunny发布了新的文献求助30
2秒前
CH应助俏皮的鸽子采纳,获得10
2秒前
冷酷百褶裙完成签到,获得积分10
2秒前
所所应助Clarissa采纳,获得10
2秒前
2秒前
早起完成签到,获得积分10
3秒前
NoELeft完成签到,获得积分10
3秒前
陈追命发布了新的文献求助10
3秒前
王大壮发布了新的文献求助10
6秒前
1234568888发布了新的文献求助10
6秒前
调皮老头发布了新的文献求助10
7秒前
Hello应助LMFY222采纳,获得10
7秒前
鸣蜩777发布了新的文献求助10
7秒前
weiyapei发布了新的文献求助10
7秒前
7秒前
可以听见吗完成签到 ,获得积分10
8秒前
8秒前
希望天下0贩的0应助梦~采纳,获得10
8秒前
9秒前
李健应助xushufang采纳,获得10
9秒前
9秒前
10秒前
10秒前
值班室禁止学习完成签到,获得积分10
10秒前
时尚的初珍完成签到,获得积分10
11秒前
11秒前
sunshine发布了新的文献求助30
12秒前
研友_Lw4Ngn发布了新的文献求助10
12秒前
樱桃味的火苗完成签到,获得积分10
12秒前
852应助Clarissa采纳,获得30
12秒前
澳門大三八应助sqk采纳,获得30
13秒前
13秒前
沸点发布了新的文献求助10
14秒前
14秒前
14秒前
117完成签到,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101308
求助须知:如何正确求助?哪些是违规求助? 2752714
关于积分的说明 7620589
捐赠科研通 2404990
什么是DOI,文献DOI怎么找? 1276041
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058