Feature Selection Based on Weighted Fuzzy Rough Sets

特征选择 模式识别(心理学) 粗集 模糊集 人工智能 特征(语言学) 选择(遗传算法) 计算机科学 数学 模糊逻辑 数据挖掘 语言学 哲学
作者
Changzhong Wang,Changyue Wang,Yuhua Qian,Qiangkui Leng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 4027-4037 被引量:33
标识
DOI:10.1109/tfuzz.2024.3387571
摘要

Fuzzy rough set approaches have received widespread attention across the disciplines of feature selection and rule extraction. When calculating the fuzzy degree of membership of a sample within a specific class, traditional fuzzy rough sets give precedence to the distance information between the sample and other samples that do not belong to the class, often neglecting the influence of the remoteness of the sample from the specified class. In fact, this calculation strategy limits the discriminability of different samples relative to a given class, which may affect the accuracy and efficiency of feature subset selection. To address the shortcoming, the present study puts forward a new fuzzy rough set approach, weighted fuzzy rough set, which can more accurately measure the correlation and difference between samples relative to the decision class. Based on the distance from a sample to a class, the model first defines the importance of the sample to the class and uses it as a weight to measure the distance between the sample and other samples that do not belong to the class, thereby constructing a more effective fuzzy rough approximation operator. On this basis, a dependency measure between decision variables and conditional attributes is defined to evaluate the importance of candidate features. Then, a concept of discrimination between samples relative to a class is proposed, and the rationality of weighted fuzzy rough set is discussed. Finally, based on weighted fuzzy rough approximation operator, a new algorithm for selecting a subset of features is formulated. Experimental outcomes demonstrate that the algorithm performs well in terms of performance, not only selecting a smaller number of features, but also achieving higher classification accuracy for simplified data, showing its practical application value in feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的雨寒完成签到,获得积分10
1秒前
1秒前
思源应助研友_5Zl9D8采纳,获得10
6秒前
十九发布了新的文献求助30
6秒前
liu_关注了科研通微信公众号
7秒前
8秒前
无昵称完成签到 ,获得积分10
10秒前
11秒前
研友_5Zl9D8发布了新的文献求助10
11秒前
adam完成签到,获得积分10
11秒前
11秒前
xd发布了新的文献求助10
12秒前
back you up应助科研通管家采纳,获得30
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
hutu发布了新的文献求助10
12秒前
擦擦完成签到,获得积分10
13秒前
xiaohu完成签到,获得积分10
14秒前
14秒前
温柔的柠檬完成签到 ,获得积分10
15秒前
15秒前
15秒前
欢呼的初蓝完成签到,获得积分10
16秒前
小当家完成签到,获得积分10
16秒前
轩辕德地完成签到,获得积分10
18秒前
康康星完成签到,获得积分10
18秒前
无心的秋珊完成签到 ,获得积分10
18秒前
18秒前
擦擦发布了新的文献求助10
19秒前
20秒前
竹筏过海应助文静的峻熙采纳,获得50
20秒前
anny.white完成签到,获得积分10
21秒前
土豆金发布了新的文献求助10
21秒前
风趣千秋发布了新的文献求助10
24秒前
打击8完成签到 ,获得积分10
24秒前
深情香寒发布了新的文献求助10
24秒前
JT完成签到,获得积分10
27秒前
29秒前
30秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742