益生菌
植物乳杆菌
金黄色葡萄球菌
微生物学
乳酸
大肠杆菌
细菌
生物
沙门氏菌
抗菌活性
乳酸菌
食品科学
生物化学
基因
遗传学
作者
Congcong Tian,Lei Wang,Mengjian Liu,Jiancheng Liu,Mingxin Qiu,Yong Chen
出处
期刊:Microorganisms
[MDPI AG]
日期:2024-04-15
卷期号:12 (4): 795-795
被引量:1
标识
DOI:10.3390/microorganisms12040795
摘要
The development of probiotics capable of quickly colonizing the intestines of animals is important in promoting the healthy growth of livestock. The aim of this study was to screen lactic acid bacteria (LAB) from the intestinal microbiota of chickens with potential applications, and to evaluate their probiotic properties and antagonistic abilities against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. The results showed that a total of 79 strains with the characteristics of LAB were isolated from the chicken cecum microbiota, of which 7 strains exhibited strong inhibitory activity against S. pullorum, S. aureus, and E. coli. Performing 16s rDNA sequencing revealed that these seven strains were Lactiplantibacillus pentosus (n = 1), Lactiplantibacillus plantarum (n = 3), Lactiplantibacillus paraplantarum (n = 1), Lactiplantibacillus argentoratensis (n = 1), and Lactiplantibacillus fabifermentans (n = 1). Among them, L. pentosus R26 and L. plantarum R32 exhibited superior antibacterial activity. These two strains demonstrated high lactic acid production ability, with survival rates of 86.29% and 87.99% after 3 h of treatment at pH 1.5, 86.66% and 85.52% after 3 h of treatment with 0.5% bile salts, 90.03% and 88.16% after 2 h of treatment with simulated gastric fluid, and 98.92% and 98.22% after 2 h of treatment with simulated intestinal fluid, respectively. Co-cultivation with L. pentosus R26 for 24 h resulted in 50% of the pathogens being antagonized, while almost complete inhibition was observed following 72 h of co-cultivation. In conclusion, L. pentosus R26 and L. plantarum R32 exhibited high antibacterial activity and acid production capability, while also demonstrating satisfactory tolerance to low pH values and high concentrations of bile salts and digestive fluid. The probiotic characteristics and stress resistance of L. pentosus R26 were slightly superior to those of L. plantarum R32, indicating its potential for development as a probiotic.
科研通智能强力驱动
Strongly Powered by AbleSci AI