已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning as a Diagnostic and Prognostic Tool for Predicting Thrombosis in Cancer Patients: A Systematic Review

医学 血栓形成 癌症 内科学 梅德林 肺栓塞 荟萃分析 肿瘤科 头颈部癌 结直肠癌 胰腺癌 外科 政治学 法学
作者
Adham El Sherbini,Stefania Coroneos,Ali Zidan,Maha Othman
出处
期刊:Seminars in Thrombosis and Hemostasis [Georg Thieme Verlag KG]
标识
DOI:10.1055/s-0044-1785482
摘要

Abstract Khorana score (KS) is an established risk assessment model for predicting cancer-associated thrombosis. However, it ignores several risk factors and has poor predictability in some cancer types. Machine learning (ML) is a novel technique used for the diagnosis and prognosis of several diseases, including cancer-associated thrombosis, when trained on specific diagnostic modalities. Consolidating the literature on the use of ML for the prediction of cancer-associated thrombosis is necessary to understand its diagnostic and prognostic abilities relative to KS. This systematic review aims to evaluate the current use and performance of ML algorithms to predict thrombosis in cancer patients. This study was conducted per Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Databases Medline, EMBASE, Cochrane, and ClinicalTrials.gov, were searched from inception to September 15, 2023, for studies evaluating the use of ML models for the prediction of thrombosis in cancer patients. Search terms “machine learning,” “artificial intelligence,” “thrombosis,” and “cancer” were used. Studies that examined adult cancer patients using any ML model were included. Two independent reviewers conducted study selection and data extraction. Three hundred citations were screened, of which 29 studies underwent a full-text review, and ultimately, 8 studies with 22,893 patients were included. Sample sizes ranged from 348 to 16,407 patients. Thrombosis was characterized as venous thromboembolism (n = 6) or peripherally inserted central catheter thrombosis (n = 2). The types of cancer included breast, gastric, colorectal, bladder, lung, esophageal, pancreatic, biliary, prostate, ovarian, genitourinary, head–neck, and sarcoma. All studies reported outcomes on the ML's predictive capacity. The extreme gradient boosting appears to be the best-performing model, and several models outperform KS in their respective datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
嘿小白完成签到,获得积分20
5秒前
阔达樱桃发布了新的文献求助10
5秒前
7秒前
8秒前
buno应助累啊采纳,获得10
10秒前
生动宛筠发布了新的文献求助10
12秒前
12秒前
12秒前
YoYo发布了新的文献求助30
15秒前
星辰大海应助累啊采纳,获得10
16秒前
风趣的从梦完成签到,获得积分10
16秒前
脑洞疼应助优秀的枕头采纳,获得10
17秒前
17秒前
布丁味小核桃完成签到,获得积分10
19秒前
所所应助过时的惜萱采纳,获得10
20秒前
20秒前
21秒前
Eins完成签到,获得积分10
21秒前
海底两万里完成签到,获得积分10
22秒前
Cindy发布了新的文献求助20
23秒前
烟花应助布丁味小核桃采纳,获得10
25秒前
酷炫抽屉完成签到 ,获得积分10
28秒前
28秒前
兔兔完成签到,获得积分10
29秒前
思源应助fengyuke采纳,获得10
30秒前
33秒前
34秒前
35秒前
xqq完成签到,获得积分10
36秒前
37秒前
新明完成签到,获得积分10
37秒前
xl完成签到 ,获得积分10
39秒前
T1unkillable完成签到 ,获得积分10
39秒前
39秒前
41秒前
42秒前
niyatingde完成签到,获得积分10
42秒前
43秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256610
求助须知:如何正确求助?哪些是违规求助? 2898770
关于积分的说明 8302167
捐赠科研通 2567897
什么是DOI,文献DOI怎么找? 1394811
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630631