Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification

医学 无线电技术 危险分层 分层(种子) 结直肠癌 内科学 磁共振成像 放射科 癌症 种子休眠 植物 休眠 发芽 生物
作者
Qiang Wang,Henrik Nilsson,Keyang Xu,Xufu Wei,Danyu Chen,Dongqin Zhao,Xiaojun Hu,Anrong Wang,Guojie Bai
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111459-111459 被引量:6
标识
DOI:10.1016/j.ejrad.2024.111459
摘要

Abstract

Objectives

This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning approach to preoperative CT images.

Methods

This retrospective study retrieved clinical information and CT images of 197 patients with CRLM from The Cancer Imaging Archive (TCIA) database. Radiomics features were extracted from a segmented liver lesion identified at the portal venous phase. Those features which showed high stability, non-redundancy, and indicative information were selected. An unsupervised consensus clustering analysis on these features was adopted to identify subgroups of CRLM patients. Overall survival (OS), disease-free survival (DFS), and liver-specific DFS were compared between the identified subgroups. Cox regression analysis was applied to evaluate prognostic risk factors.

Results

A total of 851 radiomics features were extracted, and 56 robust features were finally selected for unsupervised clustering analysis which identified two distinct subgroups (96 and 101 patients respectively). There were significant differences in the OS, DFS, and liver-specific DFS between the subgroups (all log-rank p < 0.05). The subgroup with worse outcome using the proposed radiomics model was consistently associated with shorter OS, DFS, and liver-specific DFS, with hazard ratios of 1.78 (95 %CI: 1.12–2.83), 1.72 (95 %CI: 1.16–2.54), and 1.59 (95 %CI: 1.10–2.31), respectively. The general performance of this radiomics model outperformed the traditional Clinical Risk Score and Tumor Burden Score in the prognosis prediction after surgery for CRLM.

Conclusion

Radiomics features derived from preoperative CT images can reveal the heterogeneity of CRLM and stratify the patients with CRLM into subgroups with significantly different clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的夜柳完成签到,获得积分20
1秒前
1秒前
1秒前
995完成签到 ,获得积分10
1秒前
zhm发布了新的文献求助30
1秒前
慕青应助微凉采纳,获得10
2秒前
zhangman完成签到,获得积分10
3秒前
传奇3应助lucas采纳,获得10
3秒前
李健应助比巴伯采纳,获得10
4秒前
Yixiaofei发布了新的文献求助100
4秒前
小辣里发布了新的文献求助10
4秒前
Research完成签到 ,获得积分10
5秒前
zzx完成签到 ,获得积分10
5秒前
5秒前
5秒前
wpp完成签到,获得积分10
5秒前
heyihao应助hiipaige采纳,获得10
5秒前
科目三应助大头采纳,获得10
6秒前
6秒前
7秒前
我和狂三贴贴完成签到,获得积分10
8秒前
8秒前
8秒前
乐乐应助熬夜大王采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
11秒前
小辣里完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
桐桐应助realyxy采纳,获得50
14秒前
CodeCraft应助Liu采纳,获得30
15秒前
可积发布了新的文献求助10
16秒前
meimei发布了新的文献求助10
17秒前
liufy关注了科研通微信公众号
17秒前
jahcenia完成签到,获得积分10
18秒前
xy完成签到,获得积分10
19秒前
20秒前
20秒前
隐形曼青应助夜阑卧听采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126