Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification

医学 无线电技术 危险分层 分层(种子) 结直肠癌 内科学 磁共振成像 放射科 癌症 休眠 植物 生物 种子休眠 发芽
作者
Qiang Wang,Henrik Nilsson,Keyang Xu,Xufu Wei,Danyu Chen,Dongqin Zhao,Xiaojun Hu,Anrong Wang,Guojie Bai
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:175: 111459-111459 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111459
摘要

Abstract

Objectives

This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning approach to preoperative CT images.

Methods

This retrospective study retrieved clinical information and CT images of 197 patients with CRLM from The Cancer Imaging Archive (TCIA) database. Radiomics features were extracted from a segmented liver lesion identified at the portal venous phase. Those features which showed high stability, non-redundancy, and indicative information were selected. An unsupervised consensus clustering analysis on these features was adopted to identify subgroups of CRLM patients. Overall survival (OS), disease-free survival (DFS), and liver-specific DFS were compared between the identified subgroups. Cox regression analysis was applied to evaluate prognostic risk factors.

Results

A total of 851 radiomics features were extracted, and 56 robust features were finally selected for unsupervised clustering analysis which identified two distinct subgroups (96 and 101 patients respectively). There were significant differences in the OS, DFS, and liver-specific DFS between the subgroups (all log-rank p < 0.05). The subgroup with worse outcome using the proposed radiomics model was consistently associated with shorter OS, DFS, and liver-specific DFS, with hazard ratios of 1.78 (95 %CI: 1.12–2.83), 1.72 (95 %CI: 1.16–2.54), and 1.59 (95 %CI: 1.10–2.31), respectively. The general performance of this radiomics model outperformed the traditional Clinical Risk Score and Tumor Burden Score in the prognosis prediction after surgery for CRLM.

Conclusion

Radiomics features derived from preoperative CT images can reveal the heterogeneity of CRLM and stratify the patients with CRLM into subgroups with significantly different clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晚风发布了新的文献求助10
1秒前
zjuroc发布了新的文献求助20
2秒前
坦率的松发布了新的文献求助10
2秒前
xiaokai完成签到,获得积分10
2秒前
2秒前
2秒前
Czy完成签到,获得积分10
2秒前
3秒前
小满完成签到,获得积分10
3秒前
文忉嫣完成签到,获得积分10
3秒前
3秒前
4秒前
落后秋柳完成签到,获得积分20
4秒前
Akim应助zz采纳,获得10
4秒前
5秒前
三九发布了新的文献求助10
6秒前
科研通AI5应助czq采纳,获得30
6秒前
7秒前
7秒前
7秒前
坦率的松完成签到,获得积分10
7秒前
传奇3应助贤惠的正豪采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
三寒鸦完成签到,获得积分10
8秒前
小木棉发布了新的文献求助10
8秒前
8秒前
少年郎完成签到,获得积分20
9秒前
CipherSage应助123lura采纳,获得10
9秒前
七七完成签到,获得积分10
9秒前
科研通AI2S应助小余采纳,获得10
9秒前
苹果骑士完成签到,获得积分10
9秒前
9秒前
shi hui应助jbhb采纳,获得10
10秒前
10秒前
10秒前
JUSTs0so发布了新的文献求助10
10秒前
长夜变清早完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762