已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis

电解水 电解 催化作用 电催化剂 表征(材料科学) 纳米技术 分解水 制氢 耐久性 贵金属 工艺工程 电化学 电解质 材料科学 表面工程 化学 电极 工程类 物理化学 复合材料 光催化 生物化学
作者
Xiangbowen Du,Menghui Qi,Yong Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (9): 1298-1309 被引量:1
标识
DOI:10.1021/acs.accounts.4c00029
摘要

ConspectusThe development of an advanced energy conversion system for water electrolysis with high efficiency and durability is of great significance for a hydrogen-powered society. This progress relies on the fabrication of electrocatalysts with superior electrochemical performance. Despite decades of advancements in exploring high-performance noble and non-noble metal electrocatalysts, several challenges persist at both the micro- and macrolevels in the field of water electrolysis.At the microlevel, which encompasses electrocatalyst synthesis and characterization, design strategies for high-performance electrocatalysts have primarily focused on interface chemical engineering. However, comprehensive understanding and investigation of interface chemical engineering across various length scales, from micrometers to atomic scales, are still lacking. This deficiency hampers the rational design of catalysts with optimal performance. Under harsh reaction conditions, such as high bias potential and highly acidic or alkaline media, the surface of catalyst materials is susceptible to undergoing "reconstruction", deviating from what is observed through ex situ characterization techniques postsynthesis. Conventional ex situ characterization methods do not provide an accurate depiction of the catalyst's structural evolution during the electrocatalytic reaction, hindering the exploration of the catalytic mechanism.At the macrolevel, pertaining to catalysis-performance evaluation systems and devices, traditional laboratory settings employ a conventional three-electrode or two-electrode system to assess the catalytic performance of electrocatalysts. However, this approach does not accurately simulate hydrogen production under realistic industrial conditions, such as elevated temperatures (60–70 °C), high current densities exceeding 0.5 A cm–2, and flowing electrolytes. To address this limitation, it is crucial to develop testing equipment and methodologies that replicate the actual industrial conditions.In this Account, we propose a multiscale research framework for water electrolysis, spanning from microscale synthesis to macroscale scaled reactor design. Our approach focuses on the design and evaluation of high-performance HER/OER (hydrogen evolution reaction/oxygen evolution reaction) electrocatalysts, incorporating the following strategies: Leveraging principles of interface chemical engineering across various length scales (micrometers, nanometers, and atoms) enables the design of catalyst materials that enhance both activity and durability. This approach provides a comprehensive understanding of the intricate interplay between the catalyst structure and activity, implementing in situ/operando characterization techniques to monitor dynamic interfacial reactions and surface reconstruction processes. This facilitates a profound exploration of catalytic reaction mechanisms, offering insights into the catalyst's structural evolution during the electrocatalytic reaction. We construct a laboratory-scale membrane electrode assembly (MEA) electrochemical reactor capable of operating at high current densities (>1 A cm–2) to evaluate the electrocatalytic performance under simulated industrial conditions. This ensures objective and authentic assessments of the catalyst application potential. Throughout the following sections, we illustrate the application of interface chemical engineering on different length scales in designing diverse electrocatalyst materials. We rely on in situ characterization techniques to gain a profound understanding of the mechanisms behind the HER and OER. Additionally, we describe the development of both acidic and alkaline MEA electrochemical reactors to enhance the precision of electrocatalytic performance evaluation. Finally, we provide a concise overview of the challenges and opportunities in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
开心岩应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
迟大猫应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得30
刚刚
赘婿应助科研通管家采纳,获得20
刚刚
1秒前
科研通AI5应助Felix采纳,获得10
1秒前
归尘发布了新的文献求助10
2秒前
乳酸菌小面包完成签到,获得积分10
3秒前
kaka完成签到,获得积分10
4秒前
乔心发布了新的文献求助10
5秒前
infinitear完成签到,获得积分10
7秒前
Macaco完成签到,获得积分10
10秒前
15秒前
领导范儿应助欣喜战斗机采纳,获得10
18秒前
FashionBoy应助潇洒迎夏采纳,获得10
19秒前
小小飞xxf完成签到 ,获得积分10
19秒前
23秒前
炙热孤容完成签到 ,获得积分10
24秒前
欣喜战斗机完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
飞飞飞fff完成签到 ,获得积分10
27秒前
28秒前
秋秋糖完成签到 ,获得积分20
33秒前
33秒前
34秒前
36秒前
苦杏仁应助宇文宛菡采纳,获得10
37秒前
heqiujing完成签到,获得积分20
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962