已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis

电解水 电解 催化作用 电催化剂 表征(材料科学) 纳米技术 分解水 制氢 耐久性 贵金属 工艺工程 电化学 电解质 材料科学 表面工程 化学 电极 工程类 物理化学 复合材料 光催化 生物化学
作者
Xiangbowen Du,Menghui Qi,Yong Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (9): 1298-1309 被引量:1
标识
DOI:10.1021/acs.accounts.4c00029
摘要

ConspectusThe development of an advanced energy conversion system for water electrolysis with high efficiency and durability is of great significance for a hydrogen-powered society. This progress relies on the fabrication of electrocatalysts with superior electrochemical performance. Despite decades of advancements in exploring high-performance noble and non-noble metal electrocatalysts, several challenges persist at both the micro- and macrolevels in the field of water electrolysis.At the microlevel, which encompasses electrocatalyst synthesis and characterization, design strategies for high-performance electrocatalysts have primarily focused on interface chemical engineering. However, comprehensive understanding and investigation of interface chemical engineering across various length scales, from micrometers to atomic scales, are still lacking. This deficiency hampers the rational design of catalysts with optimal performance. Under harsh reaction conditions, such as high bias potential and highly acidic or alkaline media, the surface of catalyst materials is susceptible to undergoing "reconstruction", deviating from what is observed through ex situ characterization techniques postsynthesis. Conventional ex situ characterization methods do not provide an accurate depiction of the catalyst's structural evolution during the electrocatalytic reaction, hindering the exploration of the catalytic mechanism.At the macrolevel, pertaining to catalysis-performance evaluation systems and devices, traditional laboratory settings employ a conventional three-electrode or two-electrode system to assess the catalytic performance of electrocatalysts. However, this approach does not accurately simulate hydrogen production under realistic industrial conditions, such as elevated temperatures (60–70 °C), high current densities exceeding 0.5 A cm–2, and flowing electrolytes. To address this limitation, it is crucial to develop testing equipment and methodologies that replicate the actual industrial conditions.In this Account, we propose a multiscale research framework for water electrolysis, spanning from microscale synthesis to macroscale scaled reactor design. Our approach focuses on the design and evaluation of high-performance HER/OER (hydrogen evolution reaction/oxygen evolution reaction) electrocatalysts, incorporating the following strategies: Leveraging principles of interface chemical engineering across various length scales (micrometers, nanometers, and atoms) enables the design of catalyst materials that enhance both activity and durability. This approach provides a comprehensive understanding of the intricate interplay between the catalyst structure and activity, implementing in situ/operando characterization techniques to monitor dynamic interfacial reactions and surface reconstruction processes. This facilitates a profound exploration of catalytic reaction mechanisms, offering insights into the catalyst's structural evolution during the electrocatalytic reaction. We construct a laboratory-scale membrane electrode assembly (MEA) electrochemical reactor capable of operating at high current densities (>1 A cm–2) to evaluate the electrocatalytic performance under simulated industrial conditions. This ensures objective and authentic assessments of the catalyst application potential. Throughout the following sections, we illustrate the application of interface chemical engineering on different length scales in designing diverse electrocatalyst materials. We rely on in situ characterization techniques to gain a profound understanding of the mechanisms behind the HER and OER. Additionally, we describe the development of both acidic and alkaline MEA electrochemical reactors to enhance the precision of electrocatalytic performance evaluation. Finally, we provide a concise overview of the challenges and opportunities in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻蓉发布了新的文献求助10
2秒前
科研通AI2S应助多年以后采纳,获得30
3秒前
不安红豆发布了新的文献求助10
4秒前
orchidaceae完成签到,获得积分10
5秒前
香蕉觅云应助勇往直前采纳,获得10
6秒前
段菲鹰完成签到,获得积分10
9秒前
10秒前
酷波er应助碧蓝太英采纳,获得10
10秒前
10秒前
11秒前
云上人完成签到 ,获得积分10
11秒前
上官若男应助乐观的非笑采纳,获得10
11秒前
12秒前
13秒前
15秒前
heyunfan发布了新的文献求助10
15秒前
西瓜完成签到 ,获得积分10
15秒前
多年以后发布了新的文献求助30
16秒前
大麻花发布了新的文献求助10
16秒前
orchidaceae发布了新的文献求助20
17秒前
17秒前
勇往直前发布了新的文献求助10
19秒前
英俊的铭应助heyunfan采纳,获得10
19秒前
丢丢儿完成签到 ,获得积分10
20秒前
22秒前
22秒前
正直肖发布了新的文献求助10
23秒前
乐观的凌兰完成签到 ,获得积分10
24秒前
24秒前
满唐完成签到 ,获得积分10
25秒前
28秒前
29秒前
29秒前
heyunfan完成签到,获得积分10
29秒前
111完成签到,获得积分10
31秒前
32秒前
bkagyin应助新世纪头孢战士采纳,获得50
33秒前
科研通AI2S应助JoeyCho采纳,获得30
33秒前
34秒前
白日幻想家完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136964
求助须知:如何正确求助?哪些是违规求助? 2787951
关于积分的说明 7783990
捐赠科研通 2443991
什么是DOI,文献DOI怎么找? 1299549
科研通“疑难数据库(出版商)”最低求助积分说明 625477
版权声明 600954