From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis

电解水 电解 催化作用 电催化剂 表征(材料科学) 纳米技术 分解水 制氢 耐久性 贵金属 工艺工程 电化学 电解质 材料科学 表面工程 化学 电极 工程类 物理化学 生物化学 光催化 复合材料
作者
Xiangbowen Du,Menghui Qi,Yong Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (9): 1298-1309 被引量:1
标识
DOI:10.1021/acs.accounts.4c00029
摘要

ConspectusThe development of an advanced energy conversion system for water electrolysis with high efficiency and durability is of great significance for a hydrogen-powered society. This progress relies on the fabrication of electrocatalysts with superior electrochemical performance. Despite decades of advancements in exploring high-performance noble and non-noble metal electrocatalysts, several challenges persist at both the micro- and macrolevels in the field of water electrolysis.At the microlevel, which encompasses electrocatalyst synthesis and characterization, design strategies for high-performance electrocatalysts have primarily focused on interface chemical engineering. However, comprehensive understanding and investigation of interface chemical engineering across various length scales, from micrometers to atomic scales, are still lacking. This deficiency hampers the rational design of catalysts with optimal performance. Under harsh reaction conditions, such as high bias potential and highly acidic or alkaline media, the surface of catalyst materials is susceptible to undergoing "reconstruction", deviating from what is observed through ex situ characterization techniques postsynthesis. Conventional ex situ characterization methods do not provide an accurate depiction of the catalyst's structural evolution during the electrocatalytic reaction, hindering the exploration of the catalytic mechanism.At the macrolevel, pertaining to catalysis-performance evaluation systems and devices, traditional laboratory settings employ a conventional three-electrode or two-electrode system to assess the catalytic performance of electrocatalysts. However, this approach does not accurately simulate hydrogen production under realistic industrial conditions, such as elevated temperatures (60–70 °C), high current densities exceeding 0.5 A cm–2, and flowing electrolytes. To address this limitation, it is crucial to develop testing equipment and methodologies that replicate the actual industrial conditions.In this Account, we propose a multiscale research framework for water electrolysis, spanning from microscale synthesis to macroscale scaled reactor design. Our approach focuses on the design and evaluation of high-performance HER/OER (hydrogen evolution reaction/oxygen evolution reaction) electrocatalysts, incorporating the following strategies: Leveraging principles of interface chemical engineering across various length scales (micrometers, nanometers, and atoms) enables the design of catalyst materials that enhance both activity and durability. This approach provides a comprehensive understanding of the intricate interplay between the catalyst structure and activity, implementing in situ/operando characterization techniques to monitor dynamic interfacial reactions and surface reconstruction processes. This facilitates a profound exploration of catalytic reaction mechanisms, offering insights into the catalyst's structural evolution during the electrocatalytic reaction. We construct a laboratory-scale membrane electrode assembly (MEA) electrochemical reactor capable of operating at high current densities (>1 A cm–2) to evaluate the electrocatalytic performance under simulated industrial conditions. This ensures objective and authentic assessments of the catalyst application potential. Throughout the following sections, we illustrate the application of interface chemical engineering on different length scales in designing diverse electrocatalyst materials. We rely on in situ characterization techniques to gain a profound understanding of the mechanisms behind the HER and OER. Additionally, we describe the development of both acidic and alkaline MEA electrochemical reactors to enhance the precision of electrocatalytic performance evaluation. Finally, we provide a concise overview of the challenges and opportunities in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guo完成签到,获得积分10
1秒前
1111111发布了新的文献求助10
1秒前
无限天抒关注了科研通微信公众号
3秒前
echasl73发布了新的文献求助10
3秒前
Lin完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
5秒前
神木丽完成签到,获得积分20
7秒前
9秒前
CipherSage应助Sene采纳,获得10
10秒前
12秒前
14秒前
17秒前
无限天抒发布了新的文献求助30
17秒前
蔡蔡发布了新的文献求助10
19秒前
Hz123456完成签到,获得积分10
19秒前
19秒前
KK完成签到,获得积分10
21秒前
小熊完成签到,获得积分10
21秒前
1111111完成签到 ,获得积分10
21秒前
Hz123456发布了新的文献求助10
22秒前
墨阳初晴发布了新的文献求助10
22秒前
深情安青应助褪山海采纳,获得10
23秒前
着急的滑板完成签到,获得积分10
23秒前
mengdi完成签到 ,获得积分10
24秒前
kiki完成签到,获得积分10
24秒前
橙子完成签到,获得积分10
24秒前
不安青牛应助小熊采纳,获得10
24秒前
25秒前
南大研究生完成签到 ,获得积分10
27秒前
lareina完成签到 ,获得积分10
27秒前
罗大大完成签到 ,获得积分10
28秒前
秋殇浅寞完成签到,获得积分10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
BitBong完成签到,获得积分10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998259
求助须知:如何正确求助?哪些是违规求助? 2658819
关于积分的说明 7197938
捐赠科研通 2294325
什么是DOI,文献DOI怎么找? 1216550
科研通“疑难数据库(出版商)”最低求助积分说明 593547
版权声明 592904