Dynamic Exploration-Exploitation Pareto Approach for high-dimensional expensive black-box optimization

黑匣子 数学优化 计算机科学 帕累托原理 多目标优化 数学 人工智能
作者
Nazanin Nezami,Hadis Anahideh
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:166: 106619-106619
标识
DOI:10.1016/j.cor.2024.106619
摘要

Surrogate Optimization (SO) plays a vital role in optimizing performance parameters for computationally expensive simulations. However, SO encounters significant challenges in high-dimensional spaces due to the curse of dimensionality, hampering effective point sampling around global optima. In this paper, we introduce "Dynamic Exploration-Exploitation Pareto Approach (DEEPA)," a novel SO method that combines Pareto sampling with a dynamic discretization schema to optimize high-dimensional black-box functions. Unlike traditional SO methods that heavily rely on specific surrogate models, Pareto sampling offers a more adaptable approach. Improvement-based acquisition functions, frequently employed in black-box optimization, are sensitive to model accuracy and tend to prioritize exploitation, potentially missing valuable regions of interest in complex landscapes. Furthermore, they can encounter challenges when dealing with high-dimensional problems due to the curse of dimensionality. DEEPA leverages dynamic coordinate importance to generate samples effectively, providing a solution for addressing high-dimensionality and complex functions. We employ feature selection strategies to assign importance probabilities to perturb each coordinate, demonstrating the impact of importance-based perturbation on convergence to a near-optimal region. We showcase DEEPA's versatility in fixed-batch evaluation environments using complex global optimization test problems with various topological properties. We compare DEEPA's performance with state-of-the-art black-box optimization algorithms, and our experimental results demonstrate DEEPA's superior performance, particularly in complex problems with multiple local minima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ljhya完成签到,获得积分10
1秒前
yznfly应助kanuary采纳,获得30
2秒前
2秒前
2秒前
3秒前
刘老哥6完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
3秒前
自觉醉香完成签到 ,获得积分10
3秒前
乐观依云完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
4秒前
巴山夜雨完成签到,获得积分10
5秒前
上进完成签到,获得积分10
5秒前
整齐的幻柏完成签到,获得积分20
5秒前
失眠的雅琴完成签到,获得积分10
5秒前
Stella发布了新的文献求助10
5秒前
溜铭钛完成签到,获得积分10
5秒前
慕青应助快乐的紫寒采纳,获得10
6秒前
6秒前
科研牛马人完成签到,获得积分10
7秒前
小仙女发布了新的文献求助10
7秒前
7秒前
趙途嘵生发布了新的文献求助10
8秒前
POWER完成签到,获得积分10
8秒前
巴山夜雨发布了新的文献求助10
8秒前
pylchm完成签到,获得积分10
8秒前
Orange应助啦啦啦啦啦采纳,获得10
8秒前
9秒前
细心的若风完成签到,获得积分10
10秒前
Vincent完成签到,获得积分10
11秒前
夕照古风完成签到,获得积分10
11秒前
bkagyin应助Dr.lee采纳,获得10
11秒前
FashionBoy应助夏夏采纳,获得10
11秒前
12秒前
chenjian完成签到 ,获得积分10
13秒前
情怀应助奔跑的蜗牛采纳,获得10
13秒前
13秒前
酸葡萄完成签到,获得积分10
13秒前
hu完成签到 ,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128