亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonunion scaphoid bone shape prediction using iterative kernel principal polynomial shape analysis

核主成分分析 主成分分析 人工智能 数学 活动形状模型 稳健性(进化) 模式识别(心理学) 计算机科学 分割 核方法 支持向量机 生物化学 基因 化学
作者
Junjun Zhu,Junhao Zhao,Xiangfeng Luo,Zikai Hua
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17027
摘要

Abstract Background The scaphoid is an important mechanical stabilizer for both the proximal and distal carpal columns. The precise estimation of the complete scaphoid bone based on partial bone geometric information is a crucial factor in the effective management of scaphoid nonunion. Statistical shape model (SSM) could be utilized to predict the complete scaphoid shape based on the defective scaphoid. However, traditional principal component analysis (PCA) based SSM is limited by its linearity and the inability to adjust the number of modes used for prediction. Purpose This study proposes an iterative kernel principal polynomial shape analysis (iKPPSA)‐based SSM to predict the pre‐morbid shape of the scaphoid, aiming at enhancing the accuracy as well as the robustness of the model. Methods Sixty‐five sets of scaphoid images were used to train SSM and nine sets of scaphoid images were used for validation. For each validation image set, three defect types (tubercle, proximal pole, and avascular necrosis) were virtually created. The predicted shapes of the scaphoid by PCA, PPSA, KPCA, and iKPPSA‐based SSM were evaluated against the original shape in terms of mean error, Hausdorff distance error, and Dice coefficient. Results The proposed iKPPSA‐based scaphoid SSM demonstrates significant robustness, with a generality of 0.264 mm and a specificity of 0.260 mm. It accounts for 99% of variability with the first seven principal modes of variation. Compared to the traditional PCA‐based model, the iKPPSA‐based scaphoid model prediction demonstrated superior performance for the proximal pole type fracture, with significant reductions of 25.2%, 24.7%, and 24.6% in mean error, Hausdorff distance, and root mean square error (RMSE), respectively, and a 0.35% improvement in Dice coefficient. Conclusion This study showed that the iKPPSA‐based SSM exploits the nonlinearity of data features and delivers high reconstruction accuracy. It can be effectively integrated into preoperative planning for scaphoid fracture management or morphology‐based biomechanical modeling of the scaphoid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yu发布了新的文献求助10
5秒前
8秒前
15秒前
畅快山兰完成签到 ,获得积分10
16秒前
幽默曼冬完成签到,获得积分10
20秒前
共享精神应助无私的薯片采纳,获得10
23秒前
jyy应助梨子茶采纳,获得10
31秒前
yu关注了科研通微信公众号
33秒前
量子星尘发布了新的文献求助10
48秒前
57秒前
1分钟前
搜集达人应助无私的薯片采纳,获得10
1分钟前
1分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
无私的薯片完成签到,获得积分20
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
可爱的函函应助Lorain采纳,获得10
3分钟前
3分钟前
huangwensou发布了新的文献求助30
3分钟前
5Hepburn发布了新的文献求助10
4分钟前
ZXH发布了新的文献求助10
4分钟前
5Hepburn完成签到,获得积分20
4分钟前
4分钟前
4分钟前
李健的小迷弟应助凉白开采纳,获得10
4分钟前
钟垠州完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Lorain发布了新的文献求助10
4分钟前
herococa完成签到,获得积分0
4分钟前
4分钟前
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069