Tackling Noisy Labels With Network Parameter Additive Decomposition

人工智能 计算机科学 分解 模式识别(心理学) 生态学 生物
作者
Jingyi Wang,Xiaobo Xia,Long Lan,Xinghao Wu,Jun Yu,Wenjing Yang,Bo Han,Tongliang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6341-6354 被引量:2
标识
DOI:10.1109/tpami.2024.3382138
摘要

Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage. In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e. , parameters $\mathbf {w}$ are decomposed as $\mathbf {w}=\bm {\sigma }+\bm {\gamma }$ . Afterward, the parameters $\bm {\sigma }$ are considered to memorize clean data, while the parameters $\bm {\gamma }$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm {\sigma }$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm {\gamma }$ are the opposite. In testing, only the parameters $\bm {\sigma }$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼哥发布了新的文献求助10
刚刚
清颜关注了科研通微信公众号
刚刚
量子星尘发布了新的文献求助10
刚刚
Mlwwq完成签到,获得积分10
1秒前
小可发布了新的文献求助10
1秒前
1秒前
星川发布了新的文献求助10
2秒前
tanc完成签到,获得积分10
2秒前
ding应助JX采纳,获得10
2秒前
ZZG应助动听的谷秋采纳,获得10
3秒前
小姚姚发布了新的文献求助10
3秒前
汉堡包应助风中睫毛膏采纳,获得10
3秒前
小李完成签到,获得积分10
3秒前
LXY完成签到,获得积分10
3秒前
善学以致用应助Elena采纳,获得10
4秒前
赘婿应助碧蓝青梦采纳,获得10
4秒前
儒雅的文轩完成签到,获得积分10
4秒前
包容夕阳完成签到,获得积分10
4秒前
4秒前
pluto应助hihihihihi采纳,获得10
5秒前
起司我算了完成签到,获得积分10
5秒前
小杰完成签到,获得积分10
7秒前
7秒前
Jaho完成签到,获得积分10
7秒前
嗡嗡嗡完成签到,获得积分10
7秒前
领导范儿应助禾口王采纳,获得10
8秒前
8秒前
8秒前
勿忘9451完成签到,获得积分10
8秒前
勤恳的跳跳糖完成签到,获得积分10
8秒前
爱唱歌的yu仔完成签到,获得积分10
8秒前
秋蝶完成签到 ,获得积分10
9秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
英姑应助王J采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271