Tackling Noisy Labels With Network Parameter Additive Decomposition

人工智能 计算机科学 分解 模式识别(心理学) 生态学 生物
作者
Jingyi Wang,Xiaobo Xia,Long Lan,Xinghao Wu,Jun Yu,Wenjing Yang,Bo Han,Tongliang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6341-6354 被引量:2
标识
DOI:10.1109/tpami.2024.3382138
摘要

Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage. In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e. , parameters $\mathbf {w}$ are decomposed as $\mathbf {w}=\bm {\sigma }+\bm {\gamma }$ . Afterward, the parameters $\bm {\sigma }$ are considered to memorize clean data, while the parameters $\bm {\gamma }$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm {\sigma }$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm {\gamma }$ are the opposite. In testing, only the parameters $\bm {\sigma }$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一凡完成签到,获得积分10
刚刚
萝卜青菜完成签到 ,获得积分10
1秒前
小马甲应助忧心的洙采纳,获得10
1秒前
1秒前
完美世界应助酷炫贞采纳,获得10
1秒前
Archer完成签到,获得积分10
1秒前
笑点低的凝阳完成签到,获得积分10
1秒前
无极微光应助柠檬不萌采纳,获得20
1秒前
量子星尘发布了新的文献求助10
1秒前
美好乌冬面完成签到,获得积分10
2秒前
淳于语海发布了新的文献求助10
2秒前
xiami发布了新的文献求助20
2秒前
2秒前
qqq完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
jiayue完成签到,获得积分10
3秒前
路远发布了新的文献求助10
3秒前
3秒前
3秒前
华仔应助凯凯采纳,获得10
3秒前
夏xia完成签到,获得积分10
4秒前
jingYY发布了新的文献求助10
4秒前
4秒前
Alpha完成签到,获得积分10
4秒前
4秒前
爱听歌的依霜完成签到,获得积分10
5秒前
5秒前
Hello应助平淡糖豆采纳,获得10
6秒前
负责的井发布了新的文献求助10
6秒前
loppy发布了新的文献求助10
6秒前
领导范儿应助开心的行云采纳,获得10
6秒前
6秒前
Thestar完成签到,获得积分10
7秒前
7秒前
redamancy完成签到 ,获得积分10
7秒前
晴天完成签到,获得积分10
7秒前
8秒前
fyjlfy完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997