Tackling Noisy Labels With Network Parameter Additive Decomposition

人工智能 计算机科学 分解 模式识别(心理学) 生态学 生物
作者
Jingyi Wang,Xiaobo Xia,Long Lan,Xinghao Wu,Jun Yu,Wenjing Yang,Bo Han,Tongliang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6341-6354 被引量:2
标识
DOI:10.1109/tpami.2024.3382138
摘要

Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage. In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e. , parameters $\mathbf {w}$ are decomposed as $\mathbf {w}=\bm {\sigma }+\bm {\gamma }$ . Afterward, the parameters $\bm {\sigma }$ are considered to memorize clean data, while the parameters $\bm {\gamma }$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm {\sigma }$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm {\gamma }$ are the opposite. In testing, only the parameters $\bm {\sigma }$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
趣多多发布了新的文献求助10
刚刚
腾腾发布了新的文献求助10
刚刚
知性的觅露完成签到,获得积分10
刚刚
动人的珩发布了新的文献求助10
2秒前
珊啊是珊珊啊完成签到 ,获得积分10
2秒前
3秒前
chai发布了新的文献求助10
3秒前
顾矜应助苏锦霖采纳,获得30
3秒前
盛行西风完成签到,获得积分10
3秒前
饶天源发布了新的文献求助10
3秒前
星辰大海应助聪明的毛衣采纳,获得10
4秒前
WUWEI发布了新的文献求助10
4秒前
5秒前
纯真怜梦发布了新的文献求助10
5秒前
小吕发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
TONONO发布了新的文献求助10
6秒前
6秒前
体贴薯片发布了新的文献求助10
7秒前
orixero应助李木槿采纳,获得10
7秒前
7秒前
文静绮梅完成签到 ,获得积分10
7秒前
缥缈之桃完成签到,获得积分10
7秒前
lcs完成签到,获得积分10
7秒前
8秒前
丘比特应助科研小达子采纳,获得10
9秒前
阿梓i喵桑发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
FashionBoy应助Chen采纳,获得10
11秒前
12秒前
蓦回发布了新的文献求助10
12秒前
gogpou完成签到,获得积分10
13秒前
Kayson完成签到 ,获得积分10
13秒前
ouyueling完成签到,获得积分10
13秒前
NexusExplorer应助寂寞的映秋采纳,获得10
14秒前
14秒前
完美的雅香完成签到,获得积分10
14秒前
Jasper应助留胡子的代天采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927