Symbol error rate minimization using deep learning approaches for short-reach optical communication networks

符号(正式) 缩小 计算机科学 字错误率 人工智能 算法 程序设计语言
作者
Muhammad Iqbal,Salman Ghafoor,Arsalan Ahmad,Abdulah Jeza Aljohani,Jawad Mirza,Imran Aziz,L. Potì
出处
期刊:Frontiers in Physics [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fphy.2024.1387284
摘要

Short-reach optical communication networks have various applications in areas where high-speed connectivity is needed, for example, inter- and intra-data center links, optical access networks, and indoor and in-building communication systems. Machine learning (ML) approaches provide a key solution for numerous challenging situations due to their robust decision-making, problem-solving, and pattern-recognition abilities. In this work, our focus is on utilizing deep learning models to minimize symbol error rates in short-reach optical communication setups. Various channel impairments, such as nonlinearity, chromatic dispersion (CD), and attenuation, are accurately modeled. Initially, we address the challenge of modeling a nonlinear channel. Consequently, we harness a deep learning model called autoencoders (AEs) to facilitate communication over nonlinear channels. Furthermore, we investigate how the inclusion of a nonlinear channel within an autoencoder influences the received constellation as the optical fiber length increases. Another facet of our work involves the deployment of a deep neural network-based receiver utilizing a channel influenced by chromatic dispersion. By gradually extending the optical length, we explore its impact on the received constellation and, consequently, the symbol error rate. Finally, we incorporate the split-step Fourier method (SSFM) to emulate the combined effects of nonlinearities, chromatic dispersion, and attenuation in the optical channel. This is accomplished through a neural network-based receiver. The outcome of this work is an evaluation and reduction of the symbol error rate as the length of the optical fiber is varied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cqj123发布了新的文献求助10
刚刚
研友_89eRG8完成签到,获得积分10
1秒前
慧眼痴心发布了新的文献求助200
1秒前
fengfenghao完成签到,获得积分10
1秒前
adi完成签到,获得积分10
1秒前
酷波er应助高贵魂幽采纳,获得10
2秒前
cc发布了新的文献求助10
3秒前
站走跑完成签到 ,获得积分10
5秒前
5秒前
6秒前
叶箴发布了新的文献求助10
6秒前
xyy完成签到,获得积分20
6秒前
dyc发布了新的文献求助10
10秒前
10秒前
是否跨凤乘龙完成签到,获得积分10
10秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
凉凉应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得30
12秒前
所所应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
wy.he应助科研通管家采纳,获得10
12秒前
元谷雪发布了新的文献求助10
13秒前
Saint发布了新的文献求助200
13秒前
吨吨完成签到 ,获得积分10
13秒前
wickedzz完成签到,获得积分10
14秒前
galaxy发布了新的文献求助30
15秒前
森森完成签到 ,获得积分10
15秒前
15秒前
111关闭了111文献求助
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024121
求助须知:如何正确求助?哪些是违规求助? 3564038
关于积分的说明 11344130
捐赠科研通 3295295
什么是DOI,文献DOI怎么找? 1815040
邀请新用户注册赠送积分活动 889661
科研通“疑难数据库(出版商)”最低求助积分说明 813091