Symbol error rate minimization using deep learning approaches for short-reach optical communication networks

符号(正式) 缩小 计算机科学 字错误率 人工智能 算法 程序设计语言
作者
Muhammad Iqbal,Salman Ghafoor,Arsalan Ahmad,Abdulah Jeza Aljohani,Jawad Mirza,Imran Aziz,L. Potì
出处
期刊:Frontiers in Physics [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fphy.2024.1387284
摘要

Short-reach optical communication networks have various applications in areas where high-speed connectivity is needed, for example, inter- and intra-data center links, optical access networks, and indoor and in-building communication systems. Machine learning (ML) approaches provide a key solution for numerous challenging situations due to their robust decision-making, problem-solving, and pattern-recognition abilities. In this work, our focus is on utilizing deep learning models to minimize symbol error rates in short-reach optical communication setups. Various channel impairments, such as nonlinearity, chromatic dispersion (CD), and attenuation, are accurately modeled. Initially, we address the challenge of modeling a nonlinear channel. Consequently, we harness a deep learning model called autoencoders (AEs) to facilitate communication over nonlinear channels. Furthermore, we investigate how the inclusion of a nonlinear channel within an autoencoder influences the received constellation as the optical fiber length increases. Another facet of our work involves the deployment of a deep neural network-based receiver utilizing a channel influenced by chromatic dispersion. By gradually extending the optical length, we explore its impact on the received constellation and, consequently, the symbol error rate. Finally, we incorporate the split-step Fourier method (SSFM) to emulate the combined effects of nonlinearities, chromatic dispersion, and attenuation in the optical channel. This is accomplished through a neural network-based receiver. The outcome of this work is an evaluation and reduction of the symbol error rate as the length of the optical fiber is varied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hhy发布了新的文献求助10
1秒前
故意的傲玉应助结实煎饼采纳,获得200
2秒前
乐观的一一完成签到,获得积分10
2秒前
zwzw1314完成签到,获得积分10
2秒前
001发布了新的文献求助10
3秒前
FFFFFFF应助平淡南霜采纳,获得10
3秒前
Mottri发布了新的文献求助10
3秒前
4秒前
yangyang发布了新的文献求助10
4秒前
冷酷尔琴完成签到,获得积分10
4秒前
科研通AI5应助aaaaaa采纳,获得10
4秒前
顾矜应助清脆的台灯采纳,获得10
5秒前
单薄凌蝶发布了新的文献求助50
5秒前
5秒前
羊羊爱吃羊羊完成签到 ,获得积分10
6秒前
6秒前
Akim应助BOSSJING采纳,获得10
6秒前
纸上彩虹发布了新的文献求助10
7秒前
volzzz完成签到,获得积分10
7秒前
7秒前
大胆砖头完成签到 ,获得积分10
7秒前
小蘑菇应助强健的月饼采纳,获得10
8秒前
8秒前
神揽星辰入梦完成签到,获得积分10
8秒前
吾日三省吾身完成签到 ,获得积分10
8秒前
自爱悠然完成签到,获得积分10
9秒前
9秒前
10秒前
呆瓜完成签到,获得积分10
11秒前
布丁完成签到,获得积分10
11秒前
朴素的士晋完成签到,获得积分10
11秒前
燕尔蓝发布了新的文献求助10
11秒前
我是王浩腾我是健身王完成签到,获得积分10
12秒前
12秒前
杰克李李发布了新的文献求助10
12秒前
wjs0406发布了新的文献求助10
12秒前
老李完成签到,获得积分10
12秒前
落寞寒荷完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740