Symbol error rate minimization using deep learning approaches for short-reach optical communication networks

符号(正式) 缩小 计算机科学 字错误率 人工智能 算法 程序设计语言
作者
Muhammad Iqbal,Salman Ghafoor,Arsalan Ahmad,Abdulah Jeza Aljohani,Jawad Mirza,Imran Aziz,L. Potì
出处
期刊:Frontiers in Physics [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fphy.2024.1387284
摘要

Short-reach optical communication networks have various applications in areas where high-speed connectivity is needed, for example, inter- and intra-data center links, optical access networks, and indoor and in-building communication systems. Machine learning (ML) approaches provide a key solution for numerous challenging situations due to their robust decision-making, problem-solving, and pattern-recognition abilities. In this work, our focus is on utilizing deep learning models to minimize symbol error rates in short-reach optical communication setups. Various channel impairments, such as nonlinearity, chromatic dispersion (CD), and attenuation, are accurately modeled. Initially, we address the challenge of modeling a nonlinear channel. Consequently, we harness a deep learning model called autoencoders (AEs) to facilitate communication over nonlinear channels. Furthermore, we investigate how the inclusion of a nonlinear channel within an autoencoder influences the received constellation as the optical fiber length increases. Another facet of our work involves the deployment of a deep neural network-based receiver utilizing a channel influenced by chromatic dispersion. By gradually extending the optical length, we explore its impact on the received constellation and, consequently, the symbol error rate. Finally, we incorporate the split-step Fourier method (SSFM) to emulate the combined effects of nonlinearities, chromatic dispersion, and attenuation in the optical channel. This is accomplished through a neural network-based receiver. The outcome of this work is an evaluation and reduction of the symbol error rate as the length of the optical fiber is varied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mint发布了新的文献求助10
刚刚
1秒前
贪玩书琴发布了新的文献求助10
1秒前
万能图书馆应助我不采纳,获得10
2秒前
和谐的白猫完成签到,获得积分10
2秒前
Dionysus完成签到,获得积分10
2秒前
2秒前
烂漫易绿完成签到,获得积分10
2秒前
可以叫我凌某某完成签到,获得积分20
3秒前
Ava应助慢慢采纳,获得10
3秒前
4秒前
小蘑菇应助zhouyou采纳,获得10
4秒前
4秒前
5秒前
5秒前
贪玩书琴完成签到,获得积分10
6秒前
mmmm应助聪慧的凝海采纳,获得10
6秒前
CodeCraft应助袁思宇采纳,获得10
7秒前
lili完成签到,获得积分10
7秒前
HHHHHH完成签到,获得积分10
8秒前
才下眉头发布了新的文献求助10
8秒前
ss发布了新的文献求助10
8秒前
甜甜玫瑰应助光亮灯泡采纳,获得10
9秒前
大火烧了毛毛虫完成签到,获得积分10
9秒前
黄蛋黄发布了新的文献求助10
10秒前
chemier027完成签到,获得积分10
10秒前
甜甜玫瑰应助甜甜元绿采纳,获得10
11秒前
李健的粉丝团团长应助yy采纳,获得10
11秒前
敬老院N号应助木子采纳,获得30
11秒前
12秒前
shensir发布了新的文献求助10
13秒前
聪明芹完成签到,获得积分10
13秒前
NexusExplorer应助HHHHHH采纳,获得30
14秒前
FashionBoy应助廖觅荷采纳,获得10
14秒前
我不发布了新的文献求助10
15秒前
15秒前
123发布了新的文献求助20
15秒前
16秒前
才下眉头完成签到,获得积分10
16秒前
weikeyan发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919