已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Symbol error rate minimization using deep learning approaches for short-reach optical communication networks

符号(正式) 缩小 计算机科学 字错误率 人工智能 算法 程序设计语言
作者
Muhammad Iqbal,Salman Ghafoor,Arsalan Ahmad,Abdulah Jeza Aljohani,Jawad Mirza,Imran Aziz,L. Potì
出处
期刊:Frontiers in Physics [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fphy.2024.1387284
摘要

Short-reach optical communication networks have various applications in areas where high-speed connectivity is needed, for example, inter- and intra-data center links, optical access networks, and indoor and in-building communication systems. Machine learning (ML) approaches provide a key solution for numerous challenging situations due to their robust decision-making, problem-solving, and pattern-recognition abilities. In this work, our focus is on utilizing deep learning models to minimize symbol error rates in short-reach optical communication setups. Various channel impairments, such as nonlinearity, chromatic dispersion (CD), and attenuation, are accurately modeled. Initially, we address the challenge of modeling a nonlinear channel. Consequently, we harness a deep learning model called autoencoders (AEs) to facilitate communication over nonlinear channels. Furthermore, we investigate how the inclusion of a nonlinear channel within an autoencoder influences the received constellation as the optical fiber length increases. Another facet of our work involves the deployment of a deep neural network-based receiver utilizing a channel influenced by chromatic dispersion. By gradually extending the optical length, we explore its impact on the received constellation and, consequently, the symbol error rate. Finally, we incorporate the split-step Fourier method (SSFM) to emulate the combined effects of nonlinearities, chromatic dispersion, and attenuation in the optical channel. This is accomplished through a neural network-based receiver. The outcome of this work is an evaluation and reduction of the symbol error rate as the length of the optical fiber is varied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难难难发布了新的文献求助10
2秒前
4秒前
搜集达人应助茶暖采纳,获得10
6秒前
英俊的铭应助然大宝采纳,获得10
7秒前
sym522完成签到,获得积分10
9秒前
刻苦迎波发布了新的文献求助10
9秒前
蔡从安发布了新的文献求助10
9秒前
10秒前
灰色的乌完成签到,获得积分10
11秒前
12秒前
乐空思应助sym522采纳,获得30
13秒前
ding应助果果采纳,获得30
13秒前
16秒前
jjx1005完成签到 ,获得积分10
16秒前
李爱国应助不饱和环二酮采纳,获得10
17秒前
英姑应助he采纳,获得10
17秒前
Yjn发布了新的文献求助10
17秒前
安详的海风完成签到,获得积分10
18秒前
iwsaml完成签到 ,获得积分10
20秒前
包容的睫毛膏完成签到,获得积分10
22秒前
传奇3应助难难难采纳,获得10
22秒前
浮游应助蔡从安采纳,获得10
26秒前
十三发布了新的文献求助10
27秒前
好哥哥发布了新的文献求助10
28秒前
我是125完成签到,获得积分10
30秒前
源源完成签到,获得积分10
31秒前
33秒前
桐桐应助一口袋的风采纳,获得50
34秒前
pzh798419969完成签到,获得积分10
34秒前
SUP编外人员完成签到,获得积分10
35秒前
SciGPT应助Niki采纳,获得10
35秒前
35秒前
乐乐应助我是张铁柱·采纳,获得10
36秒前
jinger发布了新的文献求助10
37秒前
38秒前
欢欢发布了新的文献求助10
38秒前
40秒前
42秒前
领导范儿应助笠原May采纳,获得10
44秒前
眼睛大世开完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633998
求助须知:如何正确求助?哪些是违规求助? 4729911
关于积分的说明 14987292
捐赠科研通 4791783
什么是DOI,文献DOI怎么找? 2559051
邀请新用户注册赠送积分活动 1519536
关于科研通互助平台的介绍 1479718