Automatic Segmentation of Bone Marrow Lesions on MRI Using a Deep Learning Method

骨髓 深度学习 分割 计算机科学 人工智能 医学 生物医学工程 病理 放射科 计算机视觉
作者
Raj Ponnusamy,Ming Zhang,Yue Wang,Xiaojiang Sun,Mohammad Jabed Morshed Chowdhury,Jeffrey B. Driban,Timothy E. McAlindon,Juan Shan
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (4): 374-374
标识
DOI:10.3390/bioengineering11040374
摘要

Bone marrow lesion (BML) volume is a potential biomarker of knee osteoarthritis (KOA) as it is associated with cartilage degeneration and pain. However, segmenting and quantifying the BML volume is challenging due to the small size, low contrast, and various positions where the BML may occur. It is also time-consuming to delineate BMLs manually. In this paper, we proposed a fully automatic segmentation method for BMLs without requiring human intervention. The model takes intermediate weighted fat-suppressed (IWFS) magnetic resonance (MR) images as input, and the output BML masks are evaluated using both regular 2D Dice similarity coefficient (DSC) of the slice-level area metric and 3D DSC of the subject-level volume metric. On a dataset with 300 subjects, each subject has a sequence of 36 IWFS MR images approximately. We randomly separated the dataset into training, validation, and testing sets with a 70%/15%/15% split at the subject level. Since not every subject or image has a BML, we excluded the images without a BML in each subset. The ground truth of the BML was labeled by trained medical staff using a semi-automatic tool. Compared with the ground truth, the proposed segmentation method achieved a Pearson's correlation coefficient of 0.98 between the manually measured volumes and automatically segmented volumes, a 2D DSC of 0.68, and a 3D DSC of 0.60 on the testing set. Although the DSC result is not high, the high correlation of 0.98 indicates that the automatically measured BML volume is strongly correlated with the manually measured BML volume, which shows the potential to use the proposed method as an automatic measurement tool for the BML biomarker to facilitate the assessment of knee OA progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
尹冰之完成签到,获得积分10
1秒前
bkagyin应助顺利的慕儿采纳,获得10
1秒前
Wang Mu发布了新的文献求助10
2秒前
良辰应助whuhustwit采纳,获得10
3秒前
3秒前
jiangmj1990发布了新的文献求助20
3秒前
3秒前
万能图书馆应助莫言采纳,获得10
4秒前
大个应助sxy采纳,获得10
5秒前
5秒前
善学以致用应助流星飞采纳,获得10
5秒前
qqqyoyoyo完成签到,获得积分10
6秒前
7秒前
zkf完成签到,获得积分10
9秒前
村上春树的摩的完成签到 ,获得积分10
9秒前
qqqyoyoyo发布了新的文献求助10
9秒前
10秒前
旺德福完成签到 ,获得积分10
10秒前
吃了吃了发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
愉快的大米完成签到,获得积分20
12秒前
13秒前
猪猪hero发布了新的文献求助20
13秒前
14秒前
阿潇完成签到 ,获得积分10
15秒前
15秒前
11完成签到,获得积分10
15秒前
仲天与发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
秀丽涵双完成签到,获得积分10
16秒前
17秒前
南信第一深情完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546424
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355871
捐赠科研通 2822198
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723295
科研通“疑难数据库(出版商)”最低求助积分说明 713690