Early detection of rubber tree powdery mildew using UAV-based hyperspectral imagery and deep learning

高光谱成像 遥感 卷积神经网络 计算机科学 图像分辨率 人工智能 树(集合论) 模式识别(心理学) 数学 地理 数学分析
作者
Tiwei Zeng,Yong Wang,Yuqi Yang,Qifu Liang,Jihua Fang,Yuan Li,Huiming Zhang,Wei Fu,Juan Wang,Xirui Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108909-108909 被引量:3
标识
DOI:10.1016/j.compag.2024.108909
摘要

Rubber tree powdery mildew(PM) is one of the most critical leaf diseases of rubber trees. The epidemic of this disease can seriously affect natural rubber yields and necessitates timely monitoring, especially in the early stages. In recent years, unmanned aerial vehicle(UAV) hyperspectral imaging technology has been widely used in the field of crop disease identification. Therefore, this paper proposes a rubber tree PM detection method based on UAV low-altitude remote sensing and hyperspectral imaging technology. Firstly, spectral reflectance wavelengths, vegetation indices(VIs), and texture features(TFs) were extracted from the region of interest of the UAV hyperspectral image. Then, random frog(RFrog) was performed to select the optimal wavelengths(OWs), Pearson correlation coefficient(PCC) and sequence backward selection(SBS) algorithm to select the effective VIs and TFs. Secondly, the multi-scale selective attention convolutional neural network(MSA-CNN) model was constructed to detect PM based on OWs, VIs, TFs and their combinations. Moreover, the original images with spatial resolution of 10 cm were resampled to different spatial resolutions(20 cm, 40 cm, 60 cm, and 80 cm) to evaluate the effect of spatial resolution in PM monitoring. The results show that the proposed MSA-CNN model could sufficiently learn important features at different scales and obtain the best results in the full-wavelength dataset(OA = 93.79 %, Kappa = 92.16 %). Meanwhile, the models constructed using combining features(OWs + TFs, VIs + TFs, OWs + VIs + TFs) perform better than single features(OWs, VIs, TFs), and the highest performance was obtained for the OWs + VIs + TFs-based model(OA = 98.44 %, Kappa = 98.04 %). The optimal spatial resolution for PM monitoring was 10 cm. In addition, combining features could improve the classification accuracy of the early stages of PM. The results of the study provide a reference for accurate PM monitoring using UAV hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰硝壤应助Duolalala采纳,获得10
1秒前
1秒前
今后应助一区种子选手采纳,获得10
1秒前
咕噜快逃完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
蝴蝶完成签到 ,获得积分10
3秒前
4秒前
4秒前
Vroom发布了新的文献求助20
4秒前
Wlx发布了新的文献求助10
4秒前
桐桐应助sky采纳,获得10
6秒前
张张发布了新的文献求助10
6秒前
阿木发布了新的文献求助30
6秒前
7秒前
zzt发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助hahahah采纳,获得10
8秒前
万能图书馆应助venjohnson采纳,获得10
8秒前
天真香烟完成签到,获得积分10
9秒前
阜睿发布了新的文献求助10
9秒前
心旷神怡发布了新的文献求助10
9秒前
11秒前
11秒前
岁岁菌完成签到,获得积分10
12秒前
12秒前
小蘑菇应助Lawgh采纳,获得10
12秒前
谦让听筠发布了新的文献求助30
13秒前
呜啦啦发布了新的文献求助10
13秒前
Denny完成签到,获得积分10
13秒前
13秒前
SciGPT应助朴实千万采纳,获得10
13秒前
14秒前
性静H情逸完成签到,获得积分10
14秒前
14秒前
zzt完成签到,获得积分20
15秒前
15秒前
舒适煎蛋完成签到,获得积分10
16秒前
赘婿应助科研狗采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419