纳米纤维
纳米技术
静电纺丝
材料科学
药物输送
芯(光纤)
表面改性
控制释放
聚合物
化学工程
复合材料
工程类
作者
Yubo Liu,Xiaohong Chen,Xiangde Lin,Jiayong Yan,Deng‐Guang Yu,Ping Liu,Hui Yang
摘要
Abstract Core–shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core–shell nanofibers. The nanoscale effects and expansive specific surface area of core–shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core–shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi‐chamber core–shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi‐chamber core–shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi‐chamber core–shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi‐chamber core–shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi‐chamber core–shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies
科研通智能强力驱动
Strongly Powered by AbleSci AI