Explainability based Panoptic brain tumor segmentation using a hybrid PA-NET with GCNN-ResNet50

分割 计算机科学 市场细分 人工智能 深度学习 鉴定(生物学) 任务(项目管理) 机器学习 模式识别(心理学) 植物 管理 营销 经济 业务 生物
作者
S. Berlin Shaheema,K. Suganya Devi,Naresh Babu Muppalaneni
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106334-106334 被引量:3
标识
DOI:10.1016/j.bspc.2024.106334
摘要

Automatic segmentation is a difficult task due to the enormous amount of information offered by the Magnetic Resonance Imaging (MRI) and the variation in tumor's location, the shape and size of the tumor. An Explainable Deep Learning Architecture for brain tumor segmentation, which offers significant insights into the decision-making process is presented. Panoptic segmentation is presented in this study, which analyzes the method with explainable deep learning and takes uncertainty into account. The main idea is to eliminate the uncertainties of the image, increase tumor identification accuracy, and apply the modified Grad-CAM method to create an explainable deep learning network that could boost confidence in medical professionals. The suggested strategy includes:(1) hybrid deep learning models for segmenting brain tumors while taking uncertainties into account, considering both the semantic and instance labels; (2) Panoptic segmentation using hybrid PA-NET with GCNN-ResNet50 for brain tumor identification considering uncertainty to improve accuracy; and (3) Explainability is examined using the modified Grad-CAM approach ensuring the model's decisions are not only precise but also clear and understandable. Several tests performed on brain tumor segmentation datasets, BraTS 2021 and BraTS 2019 revealed that the suggested hybrid approach considerably increases tumor segmentation accuracy and achieves the highest performance. The suggested method can be used to identify actual brain tumors with competitive segmentation accuracy and trustworthy outcomes for physicians with visual explanations. Healthcare practitioners can gain an enhanced understanding of model's decision-making through suggested framework, which builds confidence, allows for more informed clinical judgments, and aids in precise segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼不正完成签到,获得积分10
刚刚
刚刚
健忘的芷荷完成签到,获得积分10
1秒前
zhaoman完成签到,获得积分10
2秒前
2秒前
Owen应助一往之前采纳,获得10
3秒前
紫葡萄发布了新的文献求助10
3秒前
Meyako完成签到 ,获得积分10
3秒前
lilaiyang完成签到,获得积分10
3秒前
温暖梦玉完成签到,获得积分10
4秒前
Kyabia完成签到,获得积分10
4秒前
乌纱帽完成签到,获得积分10
4秒前
852应助13633501455采纳,获得10
4秒前
luf完成签到,获得积分10
5秒前
陶一二完成签到,获得积分10
5秒前
6秒前
搬石头发布了新的文献求助30
6秒前
Shan5完成签到,获得积分10
7秒前
一堃完成签到,获得积分10
7秒前
漆佳佳完成签到 ,获得积分10
7秒前
韩洋发布了新的文献求助10
7秒前
紫葡萄完成签到,获得积分10
9秒前
9秒前
9秒前
包容凌翠发布了新的文献求助10
10秒前
10秒前
11秒前
晓书完成签到 ,获得积分10
12秒前
12秒前
嘻嘻嘻完成签到 ,获得积分10
13秒前
13633501455完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助10
14秒前
123完成签到,获得积分10
15秒前
15秒前
16秒前
直率铃铛发布了新的文献求助10
16秒前
17秒前
13633501455发布了新的文献求助10
18秒前
科研通AI2S应助8464368采纳,获得10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813