亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainability based Panoptic brain tumor segmentation using a hybrid PA-NET with GCNN-ResNet50

分割 计算机科学 市场细分 人工智能 深度学习 鉴定(生物学) 任务(项目管理) 机器学习 模式识别(心理学) 植物 管理 营销 经济 业务 生物
作者
S. Berlin Shaheema,K. Suganya Devi,Naresh Babu Muppalaneni
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106334-106334 被引量:3
标识
DOI:10.1016/j.bspc.2024.106334
摘要

Automatic segmentation is a difficult task due to the enormous amount of information offered by the Magnetic Resonance Imaging (MRI) and the variation in tumor's location, the shape and size of the tumor. An Explainable Deep Learning Architecture for brain tumor segmentation, which offers significant insights into the decision-making process is presented. Panoptic segmentation is presented in this study, which analyzes the method with explainable deep learning and takes uncertainty into account. The main idea is to eliminate the uncertainties of the image, increase tumor identification accuracy, and apply the modified Grad-CAM method to create an explainable deep learning network that could boost confidence in medical professionals. The suggested strategy includes:(1) hybrid deep learning models for segmenting brain tumors while taking uncertainties into account, considering both the semantic and instance labels; (2) Panoptic segmentation using hybrid PA-NET with GCNN-ResNet50 for brain tumor identification considering uncertainty to improve accuracy; and (3) Explainability is examined using the modified Grad-CAM approach ensuring the model's decisions are not only precise but also clear and understandable. Several tests performed on brain tumor segmentation datasets, BraTS 2021 and BraTS 2019 revealed that the suggested hybrid approach considerably increases tumor segmentation accuracy and achieves the highest performance. The suggested method can be used to identify actual brain tumors with competitive segmentation accuracy and trustworthy outcomes for physicians with visual explanations. Healthcare practitioners can gain an enhanced understanding of model's decision-making through suggested framework, which builds confidence, allows for more informed clinical judgments, and aids in precise segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SiboN发布了新的文献求助10
1秒前
2秒前
酷炫灰狼发布了新的文献求助10
7秒前
9秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
16秒前
20秒前
多乐多发布了新的文献求助10
23秒前
1分钟前
比格大王完成签到,获得积分10
1分钟前
1分钟前
tongtong12345发布了新的文献求助40
1分钟前
1分钟前
冷静尔芙发布了新的文献求助10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
1分钟前
今后应助求求好心人采纳,获得10
1分钟前
潇洒诗槐完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
潇洒诗槐发布了新的文献求助10
1分钟前
温暖的乐蓉完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
长尾巴的人类完成签到,获得积分10
2分钟前
2分钟前
ada发布了新的文献求助10
2分钟前
比格大王发布了新的文献求助20
2分钟前
所所应助郭楠楠采纳,获得10
3分钟前
Lucas应助郭楠楠采纳,获得10
3分钟前
Hello应助郭楠楠采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
共享精神应助潇洒诗槐采纳,获得10
3分钟前
3分钟前
3分钟前
初晴完成签到 ,获得积分10
3分钟前
潇洒诗槐发布了新的文献求助10
3分钟前
SciGPT应助Developing_human采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359