Explainability based Panoptic brain tumor segmentation using a hybrid PA-NET with GCNN-ResNet50

分割 计算机科学 市场细分 人工智能 深度学习 鉴定(生物学) 任务(项目管理) 机器学习 模式识别(心理学) 植物 管理 营销 经济 业务 生物
作者
S. Berlin Shaheema,K. Suganya Devi,Naresh Babu Muppalaneni
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106334-106334 被引量:3
标识
DOI:10.1016/j.bspc.2024.106334
摘要

Automatic segmentation is a difficult task due to the enormous amount of information offered by the Magnetic Resonance Imaging (MRI) and the variation in tumor's location, the shape and size of the tumor. An Explainable Deep Learning Architecture for brain tumor segmentation, which offers significant insights into the decision-making process is presented. Panoptic segmentation is presented in this study, which analyzes the method with explainable deep learning and takes uncertainty into account. The main idea is to eliminate the uncertainties of the image, increase tumor identification accuracy, and apply the modified Grad-CAM method to create an explainable deep learning network that could boost confidence in medical professionals. The suggested strategy includes:(1) hybrid deep learning models for segmenting brain tumors while taking uncertainties into account, considering both the semantic and instance labels; (2) Panoptic segmentation using hybrid PA-NET with GCNN-ResNet50 for brain tumor identification considering uncertainty to improve accuracy; and (3) Explainability is examined using the modified Grad-CAM approach ensuring the model's decisions are not only precise but also clear and understandable. Several tests performed on brain tumor segmentation datasets, BraTS 2021 and BraTS 2019 revealed that the suggested hybrid approach considerably increases tumor segmentation accuracy and achieves the highest performance. The suggested method can be used to identify actual brain tumors with competitive segmentation accuracy and trustworthy outcomes for physicians with visual explanations. Healthcare practitioners can gain an enhanced understanding of model's decision-making through suggested framework, which builds confidence, allows for more informed clinical judgments, and aids in precise segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汤飞柏发布了新的文献求助10
刚刚
刚刚
dyfsj发布了新的文献求助10
1秒前
阿椿完成签到,获得积分20
1秒前
欣妹儿发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
钻石完成签到,获得积分10
2秒前
xushanqi完成签到,获得积分10
3秒前
3秒前
r2333完成签到,获得积分20
3秒前
4秒前
英姑应助默默安双采纳,获得10
4秒前
goth完成签到,获得积分20
5秒前
5秒前
大宝完成签到,获得积分10
5秒前
5秒前
风清扬发布了新的文献求助10
6秒前
6秒前
一个千年猪妖完成签到,获得积分20
6秒前
hhh发布了新的文献求助10
6秒前
6秒前
7秒前
动听的蛟凤完成签到,获得积分10
7秒前
含蓄的惜萱完成签到,获得积分10
7秒前
wuyong完成签到,获得积分10
7秒前
mm发布了新的文献求助10
7秒前
Guai发布了新的文献求助20
8秒前
8秒前
小明完成签到,获得积分10
8秒前
澄碧星林发布了新的文献求助10
8秒前
LCW完成签到,获得积分20
8秒前
10秒前
双生客完成签到,获得积分10
10秒前
benbengouj发布了新的文献求助10
10秒前
11秒前
qingqingiqng发布了新的文献求助30
11秒前
11秒前
隐形曼青应助axn采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130