氧化应激
2型糖尿病
运输机
糖尿病
葡萄糖转运蛋白
内科学
内分泌学
医学
钠
2型糖尿病
氧化磷酸化
药理学
化学
生物化学
胰岛素
有机化学
基因
作者
Ankita Sharma,D Aruna,Anne Beatrice
出处
期刊:Cureus
[Cureus, Inc.]
日期:2024-04-18
被引量:1
摘要
Introduction Diabetes mellitus (DM) is a global health issue with 50 million diabetics currently residing in India. Hyperglycemia causes tissue damage due to mitochondrial overproduction of reactive oxygen species. Sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) have shown a decrease in oxidative stress by either amelioration of free-radical generation or potentiation of cellular antioxidative capacity in preclinical studies. However, there is a paucity of published clinical studies. Hence, this study was undertaken to evaluate the effect of co-administration of SGLT2i with other drugs on oxidative stress in type 2 DM (T2DM) patients. Methods A prospective, parallel, open-label study in T2DM patients attending endocrinology OPD was conducted for a period of 12 months. At the clinician's discretion, patients were grouped as SGLT2i as an add-on to standard drugs vs standard drugs alone. Blood samples were collected at baseline and at the end of 12 weeks to estimate malondialdehyde (MDA), nitric oxide (NO), and glutathione (GSH) levels. Secondary parameters - glycemic indices and lipid profile - were estimated every four weeks. Results A total of 32 patients were enrolled in the study (16 per group). There was a significant decrease in MDA (p < 0.05) and NO (p < 0.01) and a highly significant increase in GSH (p < 0.001) at 12 weeks from baseline in the SGLT2i group. A reduction in fasting blood sugar (FBS) and post-prandial blood sugar (PPBS) and a 0.56% difference in HbA1c were also noted in the SGLT2i group. Significant lowering of low-density lipoprotein (LDL, p < 0.05) and elevation in HDL levels (p < 0.05) from baseline was seen in the SGLT2i group. Conclusion Co-administration of SGLT2i with antidiabetic drugs demonstrated a significant effect in improving oxidative stress biomarkers and glycemic and lipid profiles among T2DM patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI