Model-Informed Multistage Unsupervised Network for Hyperspectral Image Super-Resolution

高光谱成像 可解释性 计算机科学 深度学习 人工智能 一般化 图像(数学) 多光谱图像 模式识别(心理学) 数据挖掘 数学 数学分析
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:164
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓鹤发布了新的文献求助10
刚刚
Orange应助桔子采纳,获得10
刚刚
刚刚
糖果完成签到 ,获得积分10
刚刚
当归完成签到,获得积分10
1秒前
玩命的幻香完成签到 ,获得积分20
2秒前
ABC的风格完成签到,获得积分10
2秒前
SciGPT应助任炳成采纳,获得20
3秒前
淡淡夕阳完成签到,获得积分10
4秒前
悦耳的阑悦完成签到,获得积分20
4秒前
烟花应助T_KYG采纳,获得10
5秒前
5秒前
luobin完成签到,获得积分10
5秒前
老高发布了新的文献求助10
6秒前
6秒前
科研通AI6应助hp采纳,获得10
6秒前
卷卷完成签到,获得积分10
6秒前
热情豌豆完成签到,获得积分10
7秒前
列娜完成签到,获得积分10
8秒前
liu发布了新的文献求助10
8秒前
8秒前
9秒前
那只幸运的小肥羊完成签到,获得积分10
9秒前
yb完成签到,获得积分10
10秒前
TRY发布了新的文献求助10
10秒前
卷卷发布了新的文献求助10
10秒前
11秒前
11秒前
虎杖悠仁完成签到,获得积分20
11秒前
八号仓上半场完成签到,获得积分10
13秒前
lq8996完成签到 ,获得积分10
13秒前
99完成签到,获得积分20
13秒前
肖浩翔发布了新的文献求助10
13秒前
ZT完成签到,获得积分10
14秒前
任侠传发布了新的文献求助10
15秒前
15秒前
hp发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252