Model-Informed Multistage Unsupervised Network for Hyperspectral Image Super-Resolution

高光谱成像 可解释性 计算机科学 深度学习 人工智能 一般化 图像(数学) 多光谱图像 模式识别(心理学) 数据挖掘 数学 数学分析
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:157
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
灵巧夏彤完成签到 ,获得积分10
3秒前
ding应助珍珠红茶采纳,获得10
3秒前
先吃一只羊完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
搜集达人应助姚裕采纳,获得10
8秒前
zhenyu0430完成签到,获得积分10
8秒前
9秒前
Hhh发布了新的文献求助10
9秒前
JUNLINGDENG完成签到 ,获得积分10
9秒前
晞晞完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
cora发布了新的文献求助10
11秒前
11秒前
科研通AI6应助枯叶蝶采纳,获得10
12秒前
12秒前
13秒前
zhi发布了新的文献求助10
14秒前
Lucas应助雪菜大王采纳,获得10
14秒前
充电宝应助晞晞采纳,获得10
15秒前
15秒前
河豚素应助Lance先生采纳,获得10
15秒前
cora完成签到,获得积分10
15秒前
水水发布了新的文献求助10
16秒前
16秒前
工诩发布了新的文献求助10
17秒前
zzy完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
buerger完成签到 ,获得积分20
20秒前
量子星尘发布了新的文献求助10
21秒前
songsong发布了新的文献求助10
21秒前
21秒前
工诩完成签到,获得积分10
22秒前
RMgX完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406