Model-informed Multi-stage Unsupervised Network for Hyperspectral Image Super-resolution

高光谱成像 计算机科学 阶段(地层学) 人工智能 遥感 图像分辨率 图像(数学) 模式识别(心理学) 计算机视觉 地质学 古生物学
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠一完成签到 ,获得积分10
刚刚
yar应助研友_Z119gZ采纳,获得10
1秒前
跳跃的白云完成签到 ,获得积分10
2秒前
布丁完成签到,获得积分10
2秒前
霸气的匕完成签到,获得积分10
3秒前
鳄鱼不做饿梦完成签到,获得积分10
3秒前
活力鸡完成签到,获得积分10
3秒前
Tree完成签到 ,获得积分10
4秒前
拉普兰Z完成签到,获得积分10
4秒前
5秒前
搞怪凡波完成签到,获得积分10
5秒前
111完成签到 ,获得积分10
6秒前
昊康好完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Brooks完成签到,获得积分10
7秒前
许诺完成签到,获得积分10
7秒前
甜蜜绿蓉发布了新的文献求助10
7秒前
上官若男应助少年愁采纳,获得10
7秒前
ly完成签到,获得积分10
8秒前
LXG666完成签到,获得积分10
8秒前
科研通AI2S应助瓦罐采纳,获得10
8秒前
QYY完成签到,获得积分10
8秒前
学术牛马完成签到,获得积分10
8秒前
NexusExplorer应助背后幻波采纳,获得10
8秒前
轻松的鸿煊完成签到 ,获得积分10
9秒前
9秒前
星辉完成签到,获得积分10
9秒前
端庄白秋发布了新的文献求助10
10秒前
笨笨棒球应助roking采纳,获得50
10秒前
ybwei2008_163发布了新的文献求助10
10秒前
万坤完成签到,获得积分10
11秒前
抹茶夏天完成签到,获得积分10
11秒前
xxxxx完成签到,获得积分10
11秒前
111完成签到 ,获得积分10
11秒前
秣旎完成签到,获得积分10
11秒前
pluto应助许子健采纳,获得10
12秒前
上下完成签到 ,获得积分10
12秒前
iNk应助许子健采纳,获得10
12秒前
YifanWang应助许子健采纳,获得10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478