亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model-informed Multi-stage Unsupervised Network for Hyperspectral Image Super-resolution

高光谱成像 计算机科学 阶段(地层学) 人工智能 遥感 图像分辨率 图像(数学) 模式识别(心理学) 计算机视觉 地质学 古生物学
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Marciu33采纳,获得10
1秒前
sam完成签到,获得积分10
10秒前
sam发布了新的文献求助30
24秒前
26秒前
Akim应助sam采纳,获得10
43秒前
bkagyin应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
43秒前
可靠的寒风完成签到,获得积分10
43秒前
Perry完成签到,获得积分10
1分钟前
2分钟前
传奇3应助ffffan采纳,获得10
2分钟前
小强完成签到 ,获得积分10
2分钟前
liqiqi完成签到,获得积分20
2分钟前
2分钟前
liqiqi发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
Marciu33完成签到,获得积分10
3分钟前
我是老大应助lele200218采纳,获得10
3分钟前
3分钟前
3分钟前
lele200218完成签到,获得积分10
3分钟前
lele200218发布了新的文献求助10
3分钟前
3分钟前
彭于晏应助燕鹏采纳,获得10
3分钟前
3分钟前
Yangqx007完成签到,获得积分10
4分钟前
矜天完成签到 ,获得积分10
4分钟前
4分钟前
Yoanna_UTHSC应助Yangqx007采纳,获得30
4分钟前
4分钟前
ffffan发布了新的文献求助10
4分钟前
adcc102完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335303
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8613997
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447358
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974