Model-informed Multi-stage Unsupervised Network for Hyperspectral Image Super-resolution

高光谱成像 计算机科学 阶段(地层学) 人工智能 遥感 图像分辨率 图像(数学) 模式识别(心理学) 计算机视觉 地质学 古生物学
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gauss应助qqy413采纳,获得30
刚刚
1秒前
缥缈纲应助复杂雪一采纳,获得10
1秒前
尾随温暖完成签到,获得积分10
2秒前
8R60d8应助听语说采纳,获得10
3秒前
我是老大应助闻人华忆采纳,获得10
4秒前
细心慕凝完成签到 ,获得积分10
4秒前
lucky发布了新的文献求助10
5秒前
6秒前
6秒前
赘婿应助gdgd采纳,获得10
8秒前
WLWLW举报red求助涉嫌违规
9秒前
9秒前
9秒前
清水涧发布了新的文献求助10
10秒前
无痕完成签到,获得积分10
12秒前
波子汽水发布了新的文献求助10
12秒前
lucky完成签到,获得积分20
13秒前
14秒前
坚强鸿煊发布了新的文献求助20
14秒前
唐泽雪穗发布了新的文献求助40
15秒前
闻人华忆发布了新的文献求助10
15秒前
隐形不凡完成签到 ,获得积分10
16秒前
16秒前
黄营关注了科研通微信公众号
17秒前
18秒前
zhangyue7777发布了新的文献求助10
19秒前
无辜健柏完成签到,获得积分10
21秒前
超然度陈完成签到,获得积分10
21秒前
YY完成签到,获得积分10
22秒前
wuxin完成签到,获得积分10
22秒前
复杂雪一完成签到,获得积分10
22秒前
23秒前
24秒前
8R60d8应助听语说采纳,获得10
24秒前
土豆泥发布了新的文献求助10
25秒前
搜集达人应助sff采纳,获得10
25秒前
26秒前
27秒前
chl发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080