Model-informed Multi-stage Unsupervised Network for Hyperspectral Image Super-resolution

高光谱成像 计算机科学 阶段(地层学) 人工智能 遥感 图像分辨率 图像(数学) 模式识别(心理学) 计算机视觉 地质学 古生物学
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:9
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
筱玉完成签到,获得积分10
刚刚
李文博发布了新的文献求助10
刚刚
斯文静曼发布了新的文献求助10
刚刚
jiaolulu完成签到,获得积分10
刚刚
优秀的枫完成签到,获得积分20
刚刚
刚刚
美嘉美完成签到,获得积分10
刚刚
1秒前
炙热芝完成签到,获得积分10
2秒前
嘒彼小星完成签到 ,获得积分10
2秒前
2秒前
哭泣的翠丝完成签到,获得积分10
3秒前
3秒前
jennyyu完成签到,获得积分10
3秒前
terence完成签到,获得积分10
3秒前
4秒前
4秒前
HopeStar发布了新的文献求助10
4秒前
马保国123发布了新的文献求助10
4秒前
Hello应助蓝莓松饼采纳,获得10
5秒前
5秒前
优秀的枫发布了新的文献求助10
5秒前
5秒前
KDC完成签到,获得积分10
5秒前
MuMu完成签到,获得积分10
6秒前
6秒前
Yana1311完成签到,获得积分10
7秒前
lkc发布了新的文献求助10
7秒前
大气飞丹完成签到 ,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
yu完成签到 ,获得积分10
8秒前
Lvj发布了新的文献求助10
8秒前
英俊的铭应助lanjq兰坚强采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
含蓄的鹤发布了新的文献求助10
9秒前
9秒前
受伤访波完成签到,获得积分10
10秒前
香蕉觅云应助亻鱼采纳,获得10
10秒前
欢欢发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759