State of Charge Estimation for Commercial Li-Ion Battery Based on Simultaneously Strain and Temperature Monitoring Over Optical Fiber Sensors

电池(电) 材料科学 光纤 离子 荷电状态 光电子学 纤维 温度测量 拉伤 电荷(物理) 国家(计算机科学) 电气工程 光纤传感器 工程类 计算机科学 电信 复合材料 物理 功率(物理) 内科学 医学 量子力学 算法
作者
Xudong Xia,Wen Wu,Zhencheng Li,Xile Han,Xiaobin Xue,Gaozhi Xiao,Tuan Guo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2024.3390696
摘要

The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yiming完成签到,获得积分10
2秒前
2秒前
3秒前
1774995274发布了新的文献求助10
3秒前
Mor发布了新的文献求助10
4秒前
雪白的紫翠应助小黑采纳,获得10
4秒前
夭夭发布了新的文献求助10
5秒前
简单完成签到 ,获得积分10
5秒前
liuguyue发布了新的文献求助10
5秒前
着急的千山完成签到 ,获得积分10
6秒前
榴下晨光完成签到 ,获得积分10
7秒前
俏皮大地发布了新的文献求助10
8秒前
爱笑的发夹完成签到,获得积分10
9秒前
尚买办发布了新的文献求助10
9秒前
一鸣完成签到,获得积分10
10秒前
QOP应助小乔采纳,获得10
12秒前
炫酷火锅完成签到,获得积分10
15秒前
15秒前
shiwo110完成签到,获得积分10
15秒前
噜噜完成签到,获得积分10
15秒前
Ava应助无语啦采纳,获得10
15秒前
16秒前
小小凡完成签到,获得积分20
16秒前
suxin发布了新的文献求助10
17秒前
孤独的幻桃完成签到,获得积分10
17秒前
19秒前
ml3029发布了新的文献求助10
20秒前
Kkk完成签到 ,获得积分10
22秒前
思源应助nvwu采纳,获得10
23秒前
23秒前
SZY完成签到 ,获得积分10
26秒前
123完成签到,获得积分10
30秒前
QOP应助浅斟低唱采纳,获得10
33秒前
稳重奇异果应助felix采纳,获得10
33秒前
李健的小迷弟应助felix采纳,获得10
33秒前
ml3029完成签到,获得积分10
34秒前
kin完成签到 ,获得积分10
35秒前
年轻的蘑菇完成签到,获得积分10
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671828
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780397
捐赠科研通 2938926
什么是DOI,文献DOI怎么找? 1610272
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119