Cross-modal credibility modelling for EEG-based multimodal emotion recognition

模式 计算机科学 模态(人机交互) 可靠性 人工智能 脑电图 情态动词 刺激形态 机器学习 成对比较 模式识别(心理学) 感觉系统 认知心理学 心理学 化学 政治学 高分子化学 法学 社会科学 精神科 社会学
作者
Y. Zhang,Huan Liu,Di Wang,Dalin Zhang,Tianyu Lou,Qinghua Zheng,Chai Quek
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026040-026040 被引量:1
标识
DOI:10.1088/1741-2552/ad3987
摘要

Abstract Objective. The study of emotion recognition through electroencephalography (EEG) has garnered significant attention recently. Integrating EEG with other peripheral physiological signals may greatly enhance performance in emotion recognition. Nonetheless, existing approaches still suffer from two predominant challenges: modality heterogeneity, stemming from the diverse mechanisms across modalities, and fusion credibility, which arises when one or multiple modalities fail to provide highly credible signals. Approach. In this paper, we introduce a novel multimodal physiological signal fusion model that incorporates both intra-inter modality reconstruction and sequential pattern consistency, thereby ensuring a computable and credible EEG-based multimodal emotion recognition. For the modality heterogeneity issue, we first implement a local self-attention transformer to obtain intra-modal features for each respective modality. Subsequently, we devise a pairwise cross-attention transformer to reveal the inter-modal correlations among different modalities, thereby rendering different modalities compatible and diminishing the heterogeneity concern. For the fusion credibility issue, we introduce the concept of sequential pattern consistency to measure whether different modalities evolve in a consistent way. Specifically, we propose to measure the varying trends of different modalities, and compute the inter-modality consistency scores to ascertain fusion credibility. Main results. We conduct extensive experiments on two benchmarked datasets (DEAP and MAHNOB-HCI) with the subject-dependent paradigm. For the DEAP dataset, our method improves the accuracy by 4.58%, and the F1 score by 0.63%, compared to the state-of-the-art baseline. Similarly, for the MAHNOB-HCI dataset, our method improves the accuracy by 3.97%, and the F1 score by 4.21%. In addition, we gain much insight into the proposed framework through significance test, ablation experiments, confusion matrices and hyperparameter analysis. Consequently, we demonstrate the effectiveness of the proposed credibility modelling through statistical analysis and carefully designed experiments. Significance. All experimental results demonstrate the effectiveness of our proposed architecture and indicate that credibility modelling is essential for multimodal emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dizi_88完成签到 ,获得积分10
刚刚
敏感的芷完成签到,获得积分20
刚刚
冲鸭发布了新的文献求助10
1秒前
LL完成签到,获得积分10
2秒前
HXL完成签到 ,获得积分10
2秒前
2秒前
科目三应助么子采纳,获得10
3秒前
上官若男应助paprika采纳,获得10
3秒前
平常亦凝完成签到,获得积分20
4秒前
敏感的芷发布了新的文献求助10
4秒前
科研通AI2S应助威武的板凳采纳,获得10
5秒前
入江发布了新的文献求助10
6秒前
高鑫完成签到 ,获得积分10
6秒前
mm完成签到,获得积分10
6秒前
陈槊诸完成签到 ,获得积分10
7秒前
gg完成签到,获得积分10
8秒前
毕加索求索完成签到,获得积分10
9秒前
lxdx完成签到,获得积分10
9秒前
张豪杰发布了新的文献求助10
9秒前
科研通AI2S应助Steven采纳,获得10
9秒前
Becky完成签到,获得积分10
10秒前
胖胖玩啊玩完成签到 ,获得积分10
11秒前
11秒前
14秒前
张嘟嘟发布了新的文献求助10
15秒前
我爱科研发布了新的文献求助20
15秒前
菠萝吹雪发布了新的文献求助10
16秒前
威武的板凳完成签到,获得积分20
16秒前
星辰大海应助张继国采纳,获得10
16秒前
17秒前
么子完成签到,获得积分10
17秒前
赘婿应助Yingkun_Xu采纳,获得10
19秒前
20秒前
胖达完成签到,获得积分10
20秒前
华仔应助张豪杰采纳,获得10
21秒前
xjcy应助威武的板凳采纳,获得10
22秒前
活力的听露完成签到 ,获得积分10
22秒前
nil完成签到,获得积分20
22秒前
23秒前
Manyiu发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175