Multiscale permutation entropy based on natural visibility graph and its application to rolling bearing fault diagnosis

可见性图 能见度 方位(导航) 人工智能 熵(时间箭头) 计算机科学 图形 排列(音乐) 数学 模式识别(心理学) 组合数学 理论计算机科学 几何学 物理 光学 正多边形 量子力学 声学
作者
Ping Ma,Weilong Liang,Hongli Zhang,Cong Wang,Xinkai Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241229999
摘要

Rolling bearings being important components of mechanical equipment, the accurate fault diagnosis method of rolling bearings is of great importance to ensure production safety. Permutation entropy is a nonlinear measure of the irregularity of time series, which involves calculating permutation patterns, that is, defining permutations by comparing adjacent values of the time series. When using graph signal processing technology to analyze the vibration signal of rolling bearing, the natural visibility graph (NVG) can better reflect the dynamic characteristics of the vibration signal than path graph (PG). In this paper, the multiscale permutation entropy (MPE) is defined on NVG, and it is used to characterize the different fault characteristics of rolling bearings. The sand cat swarm optimization (SCSO) algorithm is employed to optimize the parameters of support vector machine (SVM); The MPEs of different faults of rolling bearing which defined on NVG are regarded as the fault feature set input into optimized SVM, and it is applied to characterize the different fault characteristics of rolling bearings, realizing fault diagnosis of rolling bearing. The proposed method is used to analyze the experimental data which contain both normal and faulty rolling bearings. The experiment results show that the proposed method can diagnose the bearing faults effectively. The MPE based on NVG is superior to MPE based on PG and MPE based on the vibration signal in distinguishing the different damage states of rolling bearings. The classification accuracy of optimized SVM based on SCSO algorithm is higher than other classical models. The effectiveness and feasibility of defining entropy on the graph signal and as the fault feature vectors for rolling bearing to realize fault diagnosis is validated. The results indicate that the proposed method can effectively detect bearing faults, and demonstrate its effectiveness and robustness for rolling bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张中阳发布了新的文献求助10
1秒前
1秒前
CodeCraft应助lxlcx采纳,获得10
1秒前
sunzeyi完成签到,获得积分10
1秒前
尔东发布了新的文献求助10
2秒前
浅夏完成签到,获得积分10
2秒前
盼盼完成签到,获得积分10
2秒前
2秒前
2秒前
anjun完成签到,获得积分0
3秒前
苗芸发布了新的文献求助10
3秒前
爆米花应助大林采纳,获得10
4秒前
JJJJJJJJJ完成签到,获得积分10
4秒前
4秒前
5秒前
112发布了新的文献求助10
6秒前
刘欢发布了新的文献求助10
6秒前
小马甲应助清璃采纳,获得10
7秒前
小熊猫完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
大胆的凡儿完成签到 ,获得积分10
10秒前
11秒前
houchengru发布了新的文献求助10
11秒前
11秒前
听见完成签到,获得积分10
12秒前
KingLancet完成签到,获得积分10
13秒前
害羞便当完成签到 ,获得积分10
13秒前
ylc发布了新的文献求助10
15秒前
16秒前
Salamenda发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
sunshine完成签到,获得积分10
20秒前
lf完成签到,获得积分10
20秒前
dzbb应助鲜艳的亦玉采纳,获得10
20秒前
YangD_H完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905