A spatio-temporal deep learning approach to simulating conflict risk propagation on freeways with trajectory data

计算机科学 推论 弹道 变压器 碰撞 毒物控制 软件部署 意外事故 人工智能 模拟 数据挖掘 实时计算 机器学习 工程类 计算机安全 物理 天文 电压 哲学 语言学 电气工程 操作系统 环境卫生 医学
作者
Yongjie Wang,Ying-En Ge,Yongjie Wang,Wenqiang Chen
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107377-107377
标识
DOI:10.1016/j.aap.2023.107377
摘要

On freeways, sudden deceleration or lane-changing by vehicles can trigger conflict risk that propagates backward in a specific pattern. Simulating this pattern of conflict risk propagation can not only help prevent crashes but is also vital for the deployment of advanced vehicle technologies. However, conflict risk propagation simulation (CRPS) on freeways is challenging due to the nuanced nature of the pattern, intricate spatio-temporal interdependencies among sequences and the high-resolution requirements. In this work, we introduce a conflict risk index to delineate potential conflict risk by aggregating various surrogate safety measures (SSMs) over time and space, and then propose a Spatio-Temporal Transformer Network (STTN) to simulate its propagation patterns. Multi-head attention mechanism and stacking layers enable the transformer to learn dynamic and hierarchical features in conflict risk sequences globally and locally. Two components, spatial and temporal learning transformers, are innovatively incorporated to extract and fuse these features, culminating in a fine-grained conflict risk inference. Comprehensive tests in real-world datasets verified the effectiveness of the STTN. Specifically, we employ three widely-recognized SSMs: Modified Time-To-Collision (MTTC), Proportion of Stopping Distance (PSD), and Deceleration Rate to Avoid a Collision (DRAC). These SSMs, gleaned from vehicle trajectories, are employed to delineate the conflict risk. Then, we conduct three comparative simulation tasks: MTTC-based model, PSD-based model, and DRAC-based model. Experimental results show that the PSD-based model exhibits a robust performance on all tasks, and is minimally affected by the durations of the simulation time, while the DRAC-based model more distinctly delineates the spatio-temporal conflict risk heterogeneity. Furthermore, we benchmark the STTN against three common state-of-the-art machine learning models across all simulation tasks. Results reveal that the STTN consistently surpassed these benchmark models (LSTM, CNN and ConvLSTM), suggesting the potential of the attention mechanism on the CRPS tasks. Our investigation offers crucial insights beneficial for traffic safety warning, advanced freeway management systems, and driver assistance systems, among others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
6秒前
6秒前
7秒前
8秒前
花园荆棘发布了新的文献求助10
8秒前
SG完成签到 ,获得积分10
9秒前
小王快毕业完成签到,获得积分10
10秒前
夹心发布了新的文献求助10
10秒前
AAA下水工王哥完成签到,获得积分10
11秒前
Cho发布了新的文献求助10
13秒前
科研通AI2S应助小仙女采纳,获得10
13秒前
Leo完成签到,获得积分10
13秒前
13秒前
liian7应助CC来一份升级采纳,获得10
14秒前
大雁完成签到,获得积分10
14秒前
15秒前
斯文败类应助机灵亦旋采纳,获得10
16秒前
华仔应助夹心采纳,获得10
16秒前
min完成签到,获得积分10
17秒前
妮妮完成签到,获得积分10
17秒前
Owen应助懵懂的灭男采纳,获得10
19秒前
min发布了新的文献求助10
19秒前
19秒前
小小王完成签到,获得积分10
19秒前
zyh完成签到,获得积分10
19秒前
20秒前
23秒前
充电宝应助机灵的颜演采纳,获得10
24秒前
诶嘿嘿发布了新的文献求助10
25秒前
25秒前
妮妮发布了新的文献求助10
25秒前
伯赏孱发布了新的文献求助10
27秒前
28秒前
Cho完成签到,获得积分20
31秒前
33秒前
英姑应助诶嘿嘿采纳,获得10
33秒前
34秒前
苏倩完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464