A spatio-temporal deep learning approach to simulating conflict risk propagation on freeways with trajectory data

计算机科学 推论 弹道 变压器 碰撞 毒物控制 软件部署 意外事故 人工智能 模拟 数据挖掘 实时计算 机器学习 工程类 计算机安全 医学 语言学 哲学 物理 环境卫生 电压 天文 电气工程 操作系统
作者
Yongjie Wang,Ying-En Ge,Yongjie Wang,Wenqiang Chen
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:195: 107377-107377
标识
DOI:10.1016/j.aap.2023.107377
摘要

On freeways, sudden deceleration or lane-changing by vehicles can trigger conflict risk that propagates backward in a specific pattern. Simulating this pattern of conflict risk propagation can not only help prevent crashes but is also vital for the deployment of advanced vehicle technologies. However, conflict risk propagation simulation (CRPS) on freeways is challenging due to the nuanced nature of the pattern, intricate spatio-temporal interdependencies among sequences and the high-resolution requirements. In this work, we introduce a conflict risk index to delineate potential conflict risk by aggregating various surrogate safety measures (SSMs) over time and space, and then propose a Spatio-Temporal Transformer Network (STTN) to simulate its propagation patterns. Multi-head attention mechanism and stacking layers enable the transformer to learn dynamic and hierarchical features in conflict risk sequences globally and locally. Two components, spatial and temporal learning transformers, are innovatively incorporated to extract and fuse these features, culminating in a fine-grained conflict risk inference. Comprehensive tests in real-world datasets verified the effectiveness of the STTN. Specifically, we employ three widely-recognized SSMs: Modified Time-To-Collision (MTTC), Proportion of Stopping Distance (PSD), and Deceleration Rate to Avoid a Collision (DRAC). These SSMs, gleaned from vehicle trajectories, are employed to delineate the conflict risk. Then, we conduct three comparative simulation tasks: MTTC-based model, PSD-based model, and DRAC-based model. Experimental results show that the PSD-based model exhibits a robust performance on all tasks, and is minimally affected by the durations of the simulation time, while the DRAC-based model more distinctly delineates the spatio-temporal conflict risk heterogeneity. Furthermore, we benchmark the STTN against three common state-of-the-art machine learning models across all simulation tasks. Results reveal that the STTN consistently surpassed these benchmark models (LSTM, CNN and ConvLSTM), suggesting the potential of the attention mechanism on the CRPS tasks. Our investigation offers crucial insights beneficial for traffic safety warning, advanced freeway management systems, and driver assistance systems, among others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
4秒前
4秒前
honglingjing发布了新的文献求助10
4秒前
112发布了新的文献求助20
4秒前
6秒前
Aria发布了新的文献求助10
7秒前
激动的萧发布了新的文献求助10
7秒前
S8发布了新的文献求助10
7秒前
小明发布了新的文献求助10
7秒前
11秒前
13秒前
14秒前
15秒前
852应助maymei采纳,获得10
16秒前
18秒前
陈晶完成签到 ,获得积分10
19秒前
Lin发布了新的文献求助10
20秒前
Yang完成签到,获得积分10
20秒前
温柔的凡阳完成签到,获得积分20
20秒前
老迟到的雪曼完成签到,获得积分10
21秒前
24秒前
24秒前
27秒前
27秒前
28秒前
芋泥发布了新的文献求助10
30秒前
30秒前
大风机关完成签到,获得积分10
30秒前
丘比特应助温柔的凡阳采纳,获得30
30秒前
丘比特应助专心搞学术采纳,获得10
32秒前
务实的南露完成签到,获得积分10
33秒前
34秒前
复杂的画板完成签到,获得积分10
34秒前
CipherSage应助平常的蜜蜂采纳,获得10
34秒前
35秒前
小远发布了新的文献求助10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382