A spatio-temporal deep learning approach to simulating conflict risk propagation on freeways with trajectory data

计算机科学 推论 弹道 变压器 碰撞 毒物控制 软件部署 意外事故 人工智能 模拟 数据挖掘 实时计算 机器学习 工程类 计算机安全 物理 天文 电压 哲学 语言学 电气工程 操作系统 环境卫生 医学
作者
Yongjie Wang,Ying-En Ge,Yongjie Wang,Wenqiang Chen
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107377-107377
标识
DOI:10.1016/j.aap.2023.107377
摘要

On freeways, sudden deceleration or lane-changing by vehicles can trigger conflict risk that propagates backward in a specific pattern. Simulating this pattern of conflict risk propagation can not only help prevent crashes but is also vital for the deployment of advanced vehicle technologies. However, conflict risk propagation simulation (CRPS) on freeways is challenging due to the nuanced nature of the pattern, intricate spatio-temporal interdependencies among sequences and the high-resolution requirements. In this work, we introduce a conflict risk index to delineate potential conflict risk by aggregating various surrogate safety measures (SSMs) over time and space, and then propose a Spatio-Temporal Transformer Network (STTN) to simulate its propagation patterns. Multi-head attention mechanism and stacking layers enable the transformer to learn dynamic and hierarchical features in conflict risk sequences globally and locally. Two components, spatial and temporal learning transformers, are innovatively incorporated to extract and fuse these features, culminating in a fine-grained conflict risk inference. Comprehensive tests in real-world datasets verified the effectiveness of the STTN. Specifically, we employ three widely-recognized SSMs: Modified Time-To-Collision (MTTC), Proportion of Stopping Distance (PSD), and Deceleration Rate to Avoid a Collision (DRAC). These SSMs, gleaned from vehicle trajectories, are employed to delineate the conflict risk. Then, we conduct three comparative simulation tasks: MTTC-based model, PSD-based model, and DRAC-based model. Experimental results show that the PSD-based model exhibits a robust performance on all tasks, and is minimally affected by the durations of the simulation time, while the DRAC-based model more distinctly delineates the spatio-temporal conflict risk heterogeneity. Furthermore, we benchmark the STTN against three common state-of-the-art machine learning models across all simulation tasks. Results reveal that the STTN consistently surpassed these benchmark models (LSTM, CNN and ConvLSTM), suggesting the potential of the attention mechanism on the CRPS tasks. Our investigation offers crucial insights beneficial for traffic safety warning, advanced freeway management systems, and driver assistance systems, among others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI6应助辛勤的映波采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
执着秋白发布了新的文献求助10
4秒前
wanzhao发布了新的文献求助30
7秒前
哈哈哈发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
10秒前
13秒前
13秒前
15秒前
清晨牛完成签到,获得积分10
17秒前
科研通AI6应助比奇堡力工采纳,获得10
18秒前
18秒前
落后的嚓茶完成签到,获得积分20
18秒前
哈哈哈完成签到,获得积分20
19秒前
pose关注了科研通微信公众号
20秒前
汪蔓蔓完成签到 ,获得积分10
20秒前
哈罗发布了新的文献求助10
20秒前
jiaheyuan发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
隐形曼青应助yyx164采纳,获得10
21秒前
Revision完成签到,获得积分10
21秒前
科研通AI6应助李珅玥采纳,获得30
21秒前
22秒前
22秒前
gfjh完成签到,获得积分10
23秒前
24秒前
舒适傲白发布了新的文献求助10
24秒前
水泥酱发布了新的文献求助100
24秒前
浮游应助陶醉采纳,获得10
25秒前
薄荷味完成签到,获得积分10
25秒前
L1q完成签到,获得积分10
25秒前
无极微光应助舒适的半芹采纳,获得20
25秒前
小小Li完成签到,获得积分10
26秒前
马老师发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039