Shock capturing for a high-order ALE discontinuous Galerkin method with applications to fluid flows in time-dependent domains

跨音速 间断伽辽金法 计算机科学 自适应网格优化 翼型 稳健性(进化) 有限体积法 流固耦合 应用数学 有限元法 算法 数学优化 数学 空气动力学 计算科学 物理 机械 生物化学 化学 基因 热力学
作者
Min Gao,Pascal Mossier,Claus‐Dieter Munz
出处
期刊:Computers & Fluids [Elsevier]
卷期号:269: 106124-106124
标识
DOI:10.1016/j.compfluid.2023.106124
摘要

In recent decades, the arbitrary Lagrangian–Eulerian (ALE) approach has been one of the most popular choices to deal with the fluid flows having moving boundaries. The ALE finite volume (FV) method is well-known for its capability of shock capturing. Several ALE discontinuous Galerkin (DG) methods are developed to fully explore the advantages of high-order methods, especially in complex flows. The DG scheme is highly efficient and has high resolution in smooth parts of the flow while the FV scheme has advantage on the robustness against shocks. In this paper, we present a novel algorithm to combine both the ALE FV and ALE DG methods into one stable and efficient hybrid approach. The main challenge for a mixed ALE FV method and ALE DG method is to reduce the inconsistency between both discretizations. Of particular concern are the same mesh velocity distribution between DG and FV elements and a continuous mesh velocity at the coupling interfaces. Since the computational efficiency of the proposed algorithm is of major concern, performance aspects will be considered during the construction of the scheme. To investigate the accuracy of the new scheme, several benchmark test cases with prescribed movements are included. Afterwards, the algorithm is applied to more general and complex scenarios to show its ability to cope with complex setups. In our paper, the scheme is implemented into a loosely-coupled fluid–structure interaction (FSI) framework. With a shock-driven cylinder movement in a channel flow and a transonic flow-induced airfoil vibration, we demonstrate our method for FSI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
2秒前
3秒前
葶儿发布了新的文献求助10
3秒前
hgcyp完成签到,获得积分10
8秒前
ysh完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
wang完成签到,获得积分10
12秒前
Jzhang应助Yimim采纳,获得10
13秒前
沐风发布了新的文献求助20
14秒前
汉关发布了新的文献求助10
16秒前
16秒前
葶儿完成签到,获得积分10
16秒前
安详中蓝完成签到 ,获得积分10
17秒前
呆萌士晋发布了新的文献求助10
17秒前
17秒前
19秒前
呆头发布了新的文献求助10
21秒前
若水发布了新的文献求助200
22秒前
22秒前
23秒前
子川发布了新的文献求助10
23秒前
大头娃娃没下巴完成签到,获得积分10
25秒前
liyuchen完成签到,获得积分10
25秒前
CipherSage应助Lxxx_7采纳,获得10
26秒前
烟花应助永远少年采纳,获得10
26秒前
meng发布了新的文献求助10
28秒前
科研通AI5应助贪吃的猴子采纳,获得10
30秒前
30秒前
可爱的彩虹完成签到,获得积分10
30秒前
小确幸完成签到,获得积分10
30秒前
彭于晏应助毛毛虫采纳,获得10
31秒前
LilyChen完成签到 ,获得积分10
31秒前
Owen应助Su采纳,获得10
31秒前
31秒前
31秒前
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824