阳极
材料科学
二硫化钼
法拉第效率
化学工程
杂原子
层状结构
复合数
兴奋剂
碳纤维
钒
纳米结构
纳米技术
化学
电极
复合材料
冶金
光电子学
物理化学
有机化学
工程类
戒指(化学)
作者
Xin Xu,Yawen Qiu,Zichen Len,Zongquan Chen,Wenxuan Zhu,Wenqing Zhao,Yue Dai,Liang Cao,Hongbo Geng
标识
DOI:10.1016/j.jcis.2023.11.107
摘要
Molybdenum disulfide (MoS2) has garnered attention as a promising anode material for sodium-ion batteries due to its high theoretical capacity and unique lamellar texture. Nevertheless, unmodified MoS2 suffers from inferior electrical conductivity, poor reaction reversibility, and suboptimal cycle life upon repeated sodiation/desodiation. In this study, a novel carbon-free V-heteroatom doping MoS2 composite (abbr. VMS) with hierarchical laurustinus-like structure was synthesized by a facile one-step hydrothermal process. Specifically, the rational doping of V-atoms can effectively modulate the intrinsic electronic structure of pure MoS2, resulting in enhanced Na-ion diffusion rate, improved reaction kinetics and reduced activation energy compared to bare MoS2. Additionally, the hierarchical structure of the VMS composite, with sufficient spacing, effectively mitigates mechanical stress and ensures the integrity of active materials. Consequently, the prepared VMS composite possesses exceptional reaction reversibility (average ICE value of 92 %) and remarkable capacity retention (92.1 % after 450 cycles at 10 A/g). These findings contribute valuable insights into the development of advanced MoS2-based anode for sodium ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI