Glucose metabolism‐based signature predicts prognosis and immunotherapy strategies for colon adenocarcinoma

Lasso(编程语言) 基因签名 生物 DNA微阵列 接收机工作特性 错误发现率 计算生物学 比例危险模型 肿瘤科 生物信息学 基因 医学 内科学 基因表达 遗传学 计算机科学 万维网
作者
Zilong Bai,Chunyu Yan,Yuanhua Nie,Qingnuo Zeng,Lina Xu,Shilong Wang,Dongmin Chang
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3620
摘要

Abstract Background The global prevalence and metastasis rates of colon adenocarcinoma (COAD) are high, and therapeutic success is limited. Although previous research has primarily explored changes in gene phenotypes, the incidence rate of COAD remains unchanged. Metabolic reprogramming is a crucial aspect of cancer research and therapy. The present study aims to develop cluster and polygenic risk prediction models for COAD based on glucose metabolism pathways to assess the survival status of patients and potentially identify novel immunotherapy strategies and related therapeutic targets. Methods COAD‐specific data (including clinicopathological information and gene expression profiles) were sourced from The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE33113 and GSE39582). Gene sets related to glucose metabolism were obtained from the MSigDB database. The Gene Set Variation Analysis (GSVA) method was utilized to calculate pathway scores for glucose metabolism. The hclust function in R, part of the Pheatmap package, was used to establish a clustering system. The mutation characteristics of identified clusters were assessed via MOVICS software, and differentially expressed genes (DEGs) were filtered using limma software. Signature analysis was performed using the least absolute shrinkage and selection operator (LASSO) method. Survival curves, survival receiver operating characteristic (ROC) curves and multivariate Cox regression were analyzed to assess the efficacy and accuracy of the signature for prognostic prediction. The pRRophetic program was employed to predict drug sensitivity, with data sourced from the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results Four COAD subgroups (i.e., C1, C2, C3 and C4) were identified based on glucose metabolism, with the C4 group having higher survival rates. These four clusters were bifurcated into a new Clust2 system (C1 + C2 + C3 and C4). In total, 2175 DEGs were obtained (C1 + C2 + C3 vs. C4), from which 139 prognosis‐related genes were identified. ROC curves predicting 1‐, 3‐ and 5‐year survival based on a signature containing nine genes showed an area under the curve greater than 0.7. Meanwhile, the study also found this feature to be an important predictor of prognosis in COAD and accordingly assessed the risk score, with higher risk scores being associated with a worse prognosis. The high‐risk and low‐risk groups responded differently to immunotherapy and chemotherapeutic agents, and there were differences in functional enrichment pathways. Conclusions This unique signature based on glucose metabolism may potentially provide a basis for predicting patient prognosis, biological characteristics and more effective immunotherapy strategies for COAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
马铃薯发布了新的文献求助10
3秒前
4秒前
DINGHUIMIN发布了新的文献求助10
4秒前
xiaoduan给xiaoduan的求助进行了留言
4秒前
4秒前
5秒前
五十一笑声应助susan采纳,获得50
5秒前
陶醉的大白完成签到 ,获得积分10
5秒前
6秒前
小蘑菇应助孤独的AD钙采纳,获得10
6秒前
6秒前
xia发布了新的文献求助10
8秒前
8秒前
漆玖完成签到,获得积分10
8秒前
歆兴欣发布了新的文献求助10
8秒前
小二郎应助熊有鹏采纳,获得10
9秒前
kkneed完成签到,获得积分10
10秒前
ARIA完成签到,获得积分10
10秒前
10秒前
薰硝壤应助Caffery采纳,获得20
10秒前
Puokn完成签到,获得积分10
11秒前
JimmyLinlin发布了新的文献求助10
11秒前
11秒前
沐晴发布了新的文献求助20
12秒前
李爱国应助马铃薯采纳,获得10
12秒前
小杜完成签到,获得积分10
13秒前
nightmoonsun发布了新的文献求助30
14秒前
kkneed发布了新的文献求助10
14秒前
可爱的人雄完成签到,获得积分10
14秒前
wangbq完成签到 ,获得积分10
15秒前
16秒前
踏实冰棍发布了新的文献求助10
17秒前
大卫在分享应助故笺采纳,获得10
17秒前
xia完成签到,获得积分10
18秒前
动听的母鸡完成签到,获得积分10
19秒前
Jalinezz完成签到,获得积分10
20秒前
21秒前
JimmyLinlin完成签到,获得积分10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655