High-Throughput, Multiscale Computational Screening of Metal–Organic Frameworks for Xe/Kr Separation with Machine-Learned Parameters

纳米孔 饱和(图论) 吸附 计算 蒙特卡罗方法 工作(物理) 朗缪尔吸附模型 材料科学 计算机科学 生物系统 热力学 化学 物理 算法 数学 纳米技术 物理化学 统计 组合数学 生物
作者
Guobin Zhao,Yu Chen,Yongchul G. Chung
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (37): 15176-15189 被引量:12
标识
DOI:10.1021/acs.iecr.3c02211
摘要

Accurate evaluation of adsorbent materials' performance requires carrying out process simulations that take an analytical isotherm model as an input. In this work, we report a machine learning (ML) approach to approximate the saturation loading of nanoporous materials, an essential parameter for modeling the adsorption-based process simulation. Large-scale grand canonical Monte Carlo (GCMC) simulations were carried out to compute the single-component isotherms for Xe and Kr from the Computation-Ready Experimental Metal–Organic Framework (CoRE MOF) Database 2019. The generated data were used to fit the Langmuir model equation to obtain the saturation loading parameters, which were used as a basis to train several ML models. The performance of trained ML models was then compared with the pore volume-based approach, typically used in the literature, to approximate the saturation loading of the adsorbent material. Ideal vacuum swing adsorption (IVSA) simulations were carried out to screen a large number of MOFs. We found that the ML model better estimates the saturation loading from the curve fitting compared to the pore volume approach. Finally, we carried out high-fidelity vacuum swing adsorption simulations on 15 Xe-selective MOFs. While the IVSA approach provides quantitative information about the process performance metrics, we found that the commonly used performance metrics, such as Xe/Kr IAST selectivity, work as well as the shortcut methods (IVSA simulation) in ranking the adsorbent materials for Xe/Kr separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhuboujs发布了新的文献求助10
2秒前
3秒前
华仔应助Aria采纳,获得10
3秒前
3秒前
斑马兽发布了新的文献求助10
3秒前
Ccwyhk发布了新的文献求助10
4秒前
kk完成签到,获得积分10
4秒前
赘婿应助念梦采纳,获得10
4秒前
绿豆糕驳回了iNk应助
4秒前
小马甲应助南兰杉采纳,获得10
5秒前
路宇鹏完成签到,获得积分10
6秒前
科研小黄完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助zisle采纳,获得10
6秒前
流星噬月完成签到,获得积分10
6秒前
酷波er应助Zhuzhu采纳,获得10
7秒前
123发布了新的文献求助20
7秒前
思源应助激昂的凉面采纳,获得10
7秒前
11234完成签到,获得积分10
8秒前
8秒前
科研通AI6应助nicelily采纳,获得10
8秒前
康康发布了新的文献求助10
8秒前
天天快乐应助阔达访旋采纳,获得10
9秒前
Mic应助超级的班采纳,获得10
9秒前
9秒前
zhuboujs完成签到,获得积分10
9秒前
SimonShaw完成签到,获得积分10
9秒前
10秒前
ziyu完成签到,获得积分20
10秒前
李李发布了新的文献求助10
11秒前
小二郎应助heli采纳,获得10
12秒前
12秒前
13秒前
Ylyyyyyy完成签到,获得积分20
13秒前
shawn_89完成签到,获得积分10
13秒前
科研通AI6应助科研小奶狗采纳,获得10
13秒前
14秒前
简单酒窝完成签到,获得积分20
14秒前
shelia发布了新的文献求助10
14秒前
Taozhi发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718