Machine-learning oxybarometer developed using zircon trace-element chemistry and its applications

锆石 微量元素 跟踪(心理语言学) 要素(刑法) 地球化学 地质学 化学 矿物学 哲学 政治学 语言学 法学
作者
Shaohao Zou,Matthew J. Brzozowski,Xilian Chen,Deru Xu
出处
期刊:American Mineralogist [Mineralogical Society of America]
卷期号:109 (7): 1181-1192 被引量:2
标识
DOI:10.2138/am-2023-8978
摘要

Abstract Magmatic oxygen fugacity (fO2) is a fundamental property to understanding the long-term evolution of the Earth’s atmosphere and the formation of magmatic-hydrothermal mineral deposits. Classically, the magmatic fO2 is estimated using mineral chemistry, such as Fe-Ti oxides, zircon, and hornblende. These methods, however, are only valid within certain limits and/or require a significant amount of a priori knowledge. In this contribution, a new oxybarometer, constructed by data-driven machine learning algorithms using trace elements in zircon and their corresponding independent fO2 constraints, is provided. Seven different algorithms are initially trained and then validated on a data set that was never utilized in the training processes. Results suggest that the oxybarometer constructed by the extremely randomized trees model has the best performance, with the largest R2 value (0.91 ± 0.01), smallest RMSE (0.45 ± 0.03), and low propagated analytical error (~0.10 log units). Feature importance analysis demonstrates that U, Ti, Th, Ce, and Eu in zircon are the key trace elements that preserve fO2 information. This newly developed oxybarometer has been applied in diverse systems, including arc magmas and mid-ocean ridge basalts, fertile and barren porphyry systems, and global S-type detrital zircon, which provide fO2 constraints that are consistent with other independent methods, suggesting that it has wide applicability. To improve accessibility, the oxybarometer was developed into a software application aimed at enabling more consistent and reliable fO2 determinations in magmatic systems, promoting further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助端庄之云采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
专注蚂蚁完成签到,获得积分10
2秒前
锌迹发布了新的文献求助10
2秒前
激动的fa发布了新的文献求助10
3秒前
帆帆发布了新的文献求助10
3秒前
snowy发布了新的文献求助10
4秒前
AO完成签到 ,获得积分10
4秒前
5秒前
852应助mike采纳,获得30
5秒前
小苹果汤完成签到,获得积分10
5秒前
6秒前
苹果春天发布了新的文献求助10
6秒前
6秒前
7秒前
今天看文献了吗完成签到,获得积分10
7秒前
arrow发布了新的文献求助10
8秒前
8秒前
乐乐乐完成签到,获得积分10
9秒前
研友_LwlRen发布了新的文献求助10
9秒前
9秒前
9秒前
Lucas应助月yue采纳,获得10
10秒前
思源应助锌迹采纳,获得10
10秒前
11秒前
秋子发布了新的文献求助10
11秒前
xiaohu发布了新的文献求助10
12秒前
胡梅13发布了新的文献求助10
12秒前
椰子完成签到,获得积分10
13秒前
科研通AI5应助LIANG采纳,获得10
13秒前
卢浩发布了新的文献求助10
14秒前
科研通AI5应助Ruoru采纳,获得10
14秒前
14秒前
lxxy完成签到 ,获得积分10
14秒前
沉默的早晨完成签到,获得积分10
14秒前
潇洒小松鼠完成签到,获得积分10
14秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300