Estimating Recovery in the Liquid–Liquid Extraction Chemical Space

稳健性(进化) 萃取(化学) 计算机科学 分析物 色谱法 生物系统 工艺工程 材料科学 化学 工程类 生物化学 生物 基因
作者
Kaleb J. Duelge,Joshua A. Young
标识
DOI:10.1007/s44174-023-00123-7
摘要

Chemical characterization studies for medical devices rely on extract preparation techniques such as liquid–liquid extraction to render the extract more amenable to instrumental analysis. Considering these studies are generally non-targeted, the effect of extract preparation on the full range of potential analytes must be considered. However, there is currently no workflow for evaluating the impact of extract preparation on non-targeted extractables. Herein, we present a framework for approaching this problem by defining the applicable chemical space, selecting a model that appropriately predicts recovery from the extract preparation method, selecting example chemicals with a range of expected recoveries, and experimentally measuring the recoveries to verify the model performance under laboratory conditions. The framework is demonstrated for liquid–liquid extraction, with recovery demonstrably dependent on extractable pKa and distribution coefficient. Method parameters including pH, volume ratios, and extraction iterations were also considered critical factors in determining recovery. The analytical method was subsequently verified by incorporating deliberate deviations in the critical parameters as part of robustness determination for the method using a central composite design. Overall, the method parameters selected in this work resulted in coverage of approximately 85% of the selected chemical space. Further, for the various permutations evaluated, the model was found to predict recovery with a root-mean-square error of 19%. A result of this approach is increased clarity in the use of surrogate standards for evaluation of extract preparation methods, indicating that they should be chosen based on the variables included in the predictive model. Additionally, the verified model can be applied to the selected chemical space so that estimations can be made about which relevant analytes are likely to be poorly recovered during extract preparation. This framework is generally applicable to understand the effect of extract preparation on non-targeted analysis and how these considerations can be integrated into method development and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研鸟采纳,获得10
3秒前
HTT发布了新的文献求助30
3秒前
JL完成签到,获得积分10
4秒前
壹_完成签到,获得积分10
4秒前
归零完成签到,获得积分10
7秒前
7秒前
8秒前
泽灵完成签到,获得积分10
8秒前
9秒前
孟琪富完成签到,获得积分20
9秒前
小n完成签到,获得积分10
10秒前
汉堡包应助nixx采纳,获得10
14秒前
14秒前
Fairy完成签到 ,获得积分10
15秒前
15秒前
黄橙子完成签到 ,获得积分10
15秒前
HTT完成签到,获得积分20
16秒前
猫南北发布了新的文献求助10
19秒前
Lucas应助千万雷同采纳,获得10
19秒前
19秒前
20秒前
瑶_发布了新的文献求助10
21秒前
22秒前
爆米花应助嗯哼哈哈采纳,获得10
23秒前
科研鸟发布了新的文献求助10
24秒前
渴望成功的学术残废完成签到,获得积分10
24秒前
白色的小特完成签到,获得积分10
24秒前
24秒前
24秒前
香蕉觅云应助牛牛眉目采纳,获得10
26秒前
Pp发布了新的文献求助10
27秒前
追梦完成签到 ,获得积分10
27秒前
27秒前
28秒前
Owen应助000采纳,获得10
29秒前
调皮帆布鞋完成签到,获得积分10
30秒前
31秒前
转身在街角完成签到,获得积分10
31秒前
哌替啶完成签到 ,获得积分10
32秒前
千万雷同发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388