Estimating Recovery in the Liquid–Liquid Extraction Chemical Space

稳健性(进化) 萃取(化学) 计算机科学 分析物 色谱法 生物系统 工艺工程 材料科学 化学 工程类 生物化学 基因 生物
作者
Kaleb J. Duelge,Joshua A. Young
标识
DOI:10.1007/s44174-023-00123-7
摘要

Chemical characterization studies for medical devices rely on extract preparation techniques such as liquid–liquid extraction to render the extract more amenable to instrumental analysis. Considering these studies are generally non-targeted, the effect of extract preparation on the full range of potential analytes must be considered. However, there is currently no workflow for evaluating the impact of extract preparation on non-targeted extractables. Herein, we present a framework for approaching this problem by defining the applicable chemical space, selecting a model that appropriately predicts recovery from the extract preparation method, selecting example chemicals with a range of expected recoveries, and experimentally measuring the recoveries to verify the model performance under laboratory conditions. The framework is demonstrated for liquid–liquid extraction, with recovery demonstrably dependent on extractable pKa and distribution coefficient. Method parameters including pH, volume ratios, and extraction iterations were also considered critical factors in determining recovery. The analytical method was subsequently verified by incorporating deliberate deviations in the critical parameters as part of robustness determination for the method using a central composite design. Overall, the method parameters selected in this work resulted in coverage of approximately 85% of the selected chemical space. Further, for the various permutations evaluated, the model was found to predict recovery with a root-mean-square error of 19%. A result of this approach is increased clarity in the use of surrogate standards for evaluation of extract preparation methods, indicating that they should be chosen based on the variables included in the predictive model. Additionally, the verified model can be applied to the selected chemical space so that estimations can be made about which relevant analytes are likely to be poorly recovered during extract preparation. This framework is generally applicable to understand the effect of extract preparation on non-targeted analysis and how these considerations can be integrated into method development and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lcy完成签到,获得积分10
1秒前
益点点完成签到,获得积分10
1秒前
慧慧发布了新的文献求助10
1秒前
早早发布了新的文献求助10
1秒前
2秒前
五十完成签到,获得积分20
2秒前
2秒前
Lucas应助谭平采纳,获得10
3秒前
斯文败类应助valt采纳,获得10
4秒前
huahua发布了新的文献求助10
4秒前
1fser1完成签到,获得积分10
4秒前
嘿嘿发布了新的文献求助10
5秒前
阿尔卡利斯完成签到,获得积分10
5秒前
6秒前
陶杨杨完成签到,获得积分10
6秒前
尛瞐慶成发布了新的文献求助10
6秒前
白宇完成签到 ,获得积分10
7秒前
脑洞疼应助yelis采纳,获得10
7秒前
不会游泳的鱼完成签到,获得积分10
7秒前
郭娅楠完成签到 ,获得积分10
7秒前
lailai发布了新的文献求助10
7秒前
搜集达人应助橘落采纳,获得10
8秒前
8秒前
苹果千柔发布了新的文献求助10
8秒前
kaizt完成签到,获得积分10
9秒前
斯文的从彤完成签到,获得积分10
10秒前
10秒前
Famiglistmo发布了新的文献求助10
10秒前
11秒前
李小山完成签到,获得积分10
11秒前
xie完成签到,获得积分10
11秒前
11秒前
11秒前
深山一静客完成签到,获得积分10
11秒前
11秒前
12秒前
张三顺发布了新的文献求助10
12秒前
想睡觉的薯片完成签到,获得积分10
12秒前
12秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440678
求助须知:如何正确求助?哪些是违规求助? 3037173
关于积分的说明 8967721
捐赠科研通 2725656
什么是DOI,文献DOI怎么找? 1495057
科研通“疑难数据库(出版商)”最低求助积分说明 691066
邀请新用户注册赠送积分活动 687754