Estimating Recovery in the Liquid–Liquid Extraction Chemical Space

稳健性(进化) 萃取(化学) 计算机科学 分析物 色谱法 生物系统 工艺工程 材料科学 化学 工程类 生物化学 生物 基因
作者
Kaleb J. Duelge,Joshua A. Young
标识
DOI:10.1007/s44174-023-00123-7
摘要

Chemical characterization studies for medical devices rely on extract preparation techniques such as liquid–liquid extraction to render the extract more amenable to instrumental analysis. Considering these studies are generally non-targeted, the effect of extract preparation on the full range of potential analytes must be considered. However, there is currently no workflow for evaluating the impact of extract preparation on non-targeted extractables. Herein, we present a framework for approaching this problem by defining the applicable chemical space, selecting a model that appropriately predicts recovery from the extract preparation method, selecting example chemicals with a range of expected recoveries, and experimentally measuring the recoveries to verify the model performance under laboratory conditions. The framework is demonstrated for liquid–liquid extraction, with recovery demonstrably dependent on extractable pKa and distribution coefficient. Method parameters including pH, volume ratios, and extraction iterations were also considered critical factors in determining recovery. The analytical method was subsequently verified by incorporating deliberate deviations in the critical parameters as part of robustness determination for the method using a central composite design. Overall, the method parameters selected in this work resulted in coverage of approximately 85% of the selected chemical space. Further, for the various permutations evaluated, the model was found to predict recovery with a root-mean-square error of 19%. A result of this approach is increased clarity in the use of surrogate standards for evaluation of extract preparation methods, indicating that they should be chosen based on the variables included in the predictive model. Additionally, the verified model can be applied to the selected chemical space so that estimations can be made about which relevant analytes are likely to be poorly recovered during extract preparation. This framework is generally applicable to understand the effect of extract preparation on non-targeted analysis and how these considerations can be integrated into method development and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故渊完成签到,获得积分10
刚刚
刚刚
joyzoo完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助100
1秒前
Krystal完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助孙琪琪采纳,获得10
1秒前
胡桃完成签到 ,获得积分10
2秒前
黎明完成签到,获得积分10
2秒前
2秒前
喜乐完成签到 ,获得积分10
2秒前
搜集达人应助文献快来采纳,获得10
3秒前
问题多多完成签到 ,获得积分10
3秒前
絮语发布了新的文献求助10
3秒前
英俊的铭应助csy采纳,获得10
5秒前
wanghao完成签到,获得积分10
5秒前
Bressanone完成签到,获得积分10
5秒前
5秒前
wwyy应助wanwan采纳,获得30
5秒前
6秒前
蓝书签完成签到,获得积分10
6秒前
刘家骏发布了新的文献求助10
6秒前
gaojing完成签到,获得积分10
6秒前
姜忆霜完成签到 ,获得积分10
6秒前
6秒前
姐姐完成签到,获得积分10
7秒前
66m37完成签到,获得积分10
7秒前
坚强访波完成签到,获得积分10
7秒前
李小牛完成签到,获得积分10
8秒前
8秒前
逄哈哈哈哈完成签到,获得积分10
8秒前
俭朴钢铁侠完成签到 ,获得积分10
8秒前
wanghao发布了新的文献求助10
8秒前
轻松的冰淇淋完成签到,获得积分10
8秒前
科研通AI5应助yyqx采纳,获得10
9秒前
juju完成签到,获得积分0
9秒前
9秒前
科研通AI5应助微微微微微采纳,获得10
9秒前
hero发布了新的文献求助10
9秒前
沉静自中完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901718
求助须知:如何正确求助?哪些是违规求助? 4181077
关于积分的说明 12978871
捐赠科研通 3946245
什么是DOI,文献DOI怎么找? 2164425
邀请新用户注册赠送积分活动 1182736
关于科研通互助平台的介绍 1089243