The cardiotoxicity induced by doxorubicin is dose-dependent. The present study tested the potential cardioprotective effect of Poly ADP Ribose Polymerase (PARP) pathway inhibitor "olaparib" in a mouse model of doxorubicin-induced cardiomyopathy (DOX-CM). Seventy-two male BALB/c mice were randomized into six equal groups; control, DOX-CM, dexrazoxane-treated, and three olaparib-treated groups (5, 10, and 50 mg/kg/day). Cardiomyopathy was assessed by heart weight/Tibial length (HW/TL) ratio, cardiac fibrosis, oxidative stress, and electron microscope. Myocardial expression of SERCA2a mRNA and cleaved PARP-1 protein were also assessed. Similar to dexrazoxane, olaparib (10 mg/kg/day) significantly ameliorated oxidative stress, and preserved cardiac structure. It also suppressed myocardial PARP-1 protein expression and boosted SERCA2a mRNA expression. Olaparib (5 or 50 mg/kg/day) failed to show comparable effects. The current study detected the cardioprotective effect of olaparib at a dosage of 10 mg/kg/day. Also, the present study discovered a new cardioprotective mechanism of dexrazoxane by targeting PARP-1 in the heart.