Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 生物标志物 病理 癌症 化疗 免疫疗法 无容量 生物 生物化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (12): 1411-1422 被引量:79
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助summer采纳,获得10
刚刚
刚刚
杨师傅完成签到 ,获得积分10
1秒前
惊涛骇浪发布了新的文献求助10
1秒前
苹果蜗牛完成签到 ,获得积分10
3秒前
啊o完成签到 ,获得积分10
3秒前
我吃柠檬发布了新的文献求助10
3秒前
小蘑菇应助甘乐采纳,获得10
3秒前
yy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
蔡龙杰完成签到,获得积分10
4秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
5秒前
YARA发布了新的文献求助10
5秒前
啾比文完成签到,获得积分10
5秒前
6秒前
green给green的求助进行了留言
7秒前
艾因兹怀斯完成签到,获得积分10
8秒前
黄院士发布了新的文献求助10
8秒前
9秒前
9秒前
田田完成签到 ,获得积分10
9秒前
June发布了新的文献求助30
9秒前
yjn完成签到,获得积分10
10秒前
Zhlili发布了新的文献求助20
10秒前
活泼忆丹完成签到,获得积分10
10秒前
11秒前
11秒前
玛卡发布了新的文献求助10
11秒前
12秒前
李伟完成签到,获得积分10
13秒前
jias发布了新的文献求助10
13秒前
李松林发布了新的文献求助10
14秒前
淡然的萝应助a3979107采纳,获得10
14秒前
李松林发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267