Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 回顾性队列研究 队列 生物标志物 癌症 彭布罗利珠单抗 化疗 免疫疗法 生物化学 化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras,Luís Bruges,Viviane Gnemmi,Jean‐Charles Nault,Claudia Campani,Hyungjin Rhee,Young Nyun Park,Mercedes Iñarrairaegui,Guillermo Garcia-Porrero,Josepmaría Argemi,Bruno Sangro,Antonio D’Alessio,Bernhard Scheiner,David J. Pinato,Matthias Pinter,Valérie Paradis,Aurélie Beaufrère,Simon Peter,Lorenza Rimassa,Luca Di Tommaso,Arndt Vogel,Sophie Michalak,Jérôme Boursier,Nicolas Loménie,Marianne Ziol,Julien Caldéraro,Daniela Allende,Giuliana Amaddeo,Josepmaría Argemi,Sylvain Baulande,Aurélie Beaufrère,María Bermúdez-Ramos,Camille Boulagnon‐Rombi,Jérôme Boursier,Luís Bruges,Julien Caldéraro,Claudia Campani,Stefano Caruso,Andrea Casadei‐Gardini,A Garcia,Stephen L. Chan,Antonio D’Alessio,Luca Di Tommaso,Alba Díaz,Antonia Digklia,Jean‐François Dufour,Guillermo Garcia-Porrero,Narmin Ghaffari Laleh,Viviane Gnemmi,Purva Gopal,Rondell P. Graham,Alexandra Heurgué,Massimo Iavarone,Mercedes Iñarrairaegui,Jakob Nikolas Kather,Christophe Klein,Ismaïl Labgaa,Sonia Lameiras,Patricia Legoix,Marie Lequoy,Howard Ho‐Wai Leung,Nicolas Loménie,Marco Maggioni,Pascale Maillé,Juan Ignacio Marín Zuluaga,Guillermo Mendoza-Pacas,Sophie Michalak,Beatriz Mínguez,Omar S.M. El Nahhas,Jean‐Charles Nault,Pooja Navale,Massih Ningarhari,Valérie Paradis,Young Nyun Park,Jean‐Michel Pawlotsky,Federica Pedica,Riccardo Perbellini,Simon Peter,David J. Pinato,Matthias Pinter,Pompilia Radu,Hélène Regnault,María Reig,Mohamed Rela,Hyungjin Rhee,Lorenza Rimassa,Margherita Rimini,María Teresa Salcedo,Bruno Sangro,Bernhard Scheiner,Christine Sempoux,Tung‐Hung Su,Callie Torres,Nguyen H. Tran,Eric Trépo,Marı́a Varela,Gontran Verset,Mukul Vij,Arndt Vogel,Dominique Wendum,Qinghe Zeng,Marianne Ziol
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (12): 1411-1422 被引量:24
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
两百斤胖子关注了科研通微信公众号
刚刚
111发布了新的文献求助10
2秒前
9秒前
Jasper应助Kk采纳,获得30
10秒前
11秒前
大模型应助Roxanne采纳,获得30
12秒前
13秒前
加菲丰丰举报俭朴的旭尧求助涉嫌违规
15秒前
zhu发布了新的文献求助10
17秒前
七喜完成签到 ,获得积分10
18秒前
21秒前
JamesPei应助你好啊采纳,获得10
21秒前
23秒前
小山隹完成签到,获得积分10
26秒前
TORGO发布了新的文献求助30
26秒前
27秒前
28秒前
从南到北完成签到,获得积分10
29秒前
思源应助活泼的绿竹采纳,获得10
29秒前
yj发布了新的文献求助10
30秒前
32秒前
bestbanana发布了新的文献求助10
34秒前
Lucas应助小支绝不停笔采纳,获得10
36秒前
siqilinwillbephd完成签到,获得积分10
36秒前
杜林发布了新的文献求助10
38秒前
38秒前
木易完成签到,获得积分10
38秒前
Ventus发布了新的文献求助10
40秒前
善良的书本应助Steven采纳,获得30
40秒前
43秒前
46秒前
活泼的绿竹完成签到,获得积分10
50秒前
互助遵法尚德应助Ventus采纳,获得10
51秒前
53秒前
刘一刀完成签到,获得积分10
53秒前
53秒前
加菲丰丰举报三岁半求助涉嫌违规
54秒前
HY发布了新的文献求助10
58秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043