清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 生物标志物 病理 癌症 化疗 免疫疗法 无容量 生物 生物化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (12): 1411-1422 被引量:79
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助koubi采纳,获得10
2秒前
达克赛德完成签到 ,获得积分10
22秒前
小刘同学完成签到,获得积分20
26秒前
31秒前
46秒前
复杂的可乐完成签到 ,获得积分10
47秒前
Lillianzhu1完成签到,获得积分10
49秒前
54秒前
xingsixs完成签到 ,获得积分10
1分钟前
机智的孤兰完成签到 ,获得积分10
1分钟前
1分钟前
cgs完成签到 ,获得积分10
1分钟前
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
zijingsy完成签到 ,获得积分0
1分钟前
树妖三三完成签到,获得积分10
1分钟前
1分钟前
1分钟前
舒适的一凤完成签到 ,获得积分10
2分钟前
2分钟前
梓歆发布了新的文献求助10
2分钟前
龚瑶完成签到 ,获得积分10
2分钟前
2分钟前
xh完成签到,获得积分10
2分钟前
2分钟前
2分钟前
时老完成签到 ,获得积分10
2分钟前
3分钟前
tszjw168完成签到 ,获得积分0
3分钟前
3分钟前
赘婿应助梓歆采纳,获得10
3分钟前
柠檬普洱茶完成签到,获得积分10
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
梓歆发布了新的文献求助10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
4分钟前
hyl-tcm完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482586
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389200
捐赠科研通 4512482
什么是DOI,文献DOI怎么找? 2472995
邀请新用户注册赠送积分活动 1459182
关于科研通互助平台的介绍 1432685