已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 生物标志物 病理 癌症 化疗 免疫疗法 无容量 生物 生物化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (12): 1411-1422 被引量:66
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zffang发布了新的文献求助10
1秒前
牛超完成签到 ,获得积分10
1秒前
橙橙发布了新的文献求助30
2秒前
稳重岩完成签到 ,获得积分10
2秒前
4秒前
哈基米德应助科研通管家采纳,获得20
5秒前
Ak完成签到,获得积分0
5秒前
Owen应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
6秒前
GingerF应助科研通管家采纳,获得50
6秒前
哈基米德应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
哈基米德应助科研通管家采纳,获得20
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助qianqina采纳,获得10
7秒前
感动手链完成签到,获得积分10
9秒前
555完成签到,获得积分10
11秒前
Fxy完成签到 ,获得积分10
12秒前
挚智完成签到 ,获得积分10
14秒前
15秒前
haohaohao完成签到,获得积分10
15秒前
sunyt完成签到,获得积分10
16秒前
情怀应助Yi采纳,获得10
16秒前
浮游应助远方采纳,获得10
18秒前
不可以哦完成签到 ,获得积分10
18秒前
19秒前
rick3455完成签到 ,获得积分10
20秒前
开放的亦竹完成签到,获得积分10
20秒前
执念完成签到 ,获得积分10
21秒前
22秒前
耶耶完成签到,获得积分20
23秒前
Doctor完成签到 ,获得积分10
23秒前
拼搏的寒凝完成签到 ,获得积分10
24秒前
大学生完成签到 ,获得积分10
24秒前
林林发布了新的文献求助10
25秒前
Only1完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386