Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 生物标志物 病理 癌症 化疗 免疫疗法 无容量 生物 生物化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:24 (12): 1411-1422 被引量:37
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
10Shi完成签到 ,获得积分10
5秒前
啦啦啦发布了新的文献求助10
5秒前
友好绮兰完成签到,获得积分10
5秒前
7秒前
8秒前
伶俐的海瑶完成签到 ,获得积分10
9秒前
10秒前
11秒前
非哲完成签到 ,获得积分10
11秒前
11秒前
初闻完成签到,获得积分10
12秒前
Eddy发布了新的文献求助30
13秒前
13秒前
小二郎应助周城采纳,获得10
14秒前
陈子旋发布了新的文献求助10
14秒前
16秒前
CodeCraft应助月月鸟采纳,获得10
16秒前
17秒前
19秒前
慕青应助儒雅的冷松采纳,获得10
19秒前
偑厸发布了新的文献求助10
19秒前
20秒前
稳重代容发布了新的文献求助30
22秒前
啦啦啦完成签到,获得积分20
23秒前
在水一方应助喧嚣的风儿采纳,获得10
24秒前
25秒前
范先生发布了新的文献求助10
26秒前
27秒前
明亮的冷雪完成签到,获得积分10
29秒前
周城发布了新的文献求助10
29秒前
30秒前
科研通AI5应助上帝开玩笑采纳,获得10
30秒前
科研通AI5应助稳重代容采纳,获得10
30秒前
31秒前
32秒前
华仔应助港岛妹妹采纳,获得10
32秒前
思源应助月月鸟采纳,获得10
32秒前
精明的盼雁完成签到,获得积分10
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762456
求助须知:如何正确求助?哪些是违规求助? 3306266
关于积分的说明 10137663
捐赠科研通 3020523
什么是DOI,文献DOI怎么找? 1658939
邀请新用户注册赠送积分活动 792174
科研通“疑难数据库(出版商)”最低求助积分说明 754881