Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study

阿替唑单抗 医学 贝伐单抗 肿瘤科 内科学 肝细胞癌 生物标志物 病理 癌症 化疗 免疫疗法 无容量 生物 生物化学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Daniela Allende,Beatriz Mínguez,Massimo Iavarone,Massih Ningarhari,Andrea Casadei‐Gardini,Federica Pedica,Margherita Rimini,Riccardo Perbellini,Camille Boulagnon‐Rombi,Alexandra Heurgué,Marco Maggioni,Mohamed Rela,Mukul Vij,Sylvain Baulande,Patricia Legoix,Sonia Lameiras,Daniela Allende,Giuliana Amaddeo,Lorenza Rimassa,Sylvain Baulande,Aurélie Beaufrère,María Bermúdez-Ramos,Camille Boulagnon‐Rombi,Arndt Vogel,Josepmaría Argemí,Julien Caldéraro,Pompilia Radu,Stefano Caruso,Andrea Casadei‐Gardini,A. García,Stephen L. Chan,María Teresa Salcedo,Marı́a Varela,Alba Díaz,Antonia Digklia,Jean‐François Dufour,Hyungjin Rhee,Narmin Ghaffari Laleh,Nicolas Loménie,Purva Gopal,Rondell P. Graham,Alexandra Heurgué,Massimo Iavarone,Mercedes Iñarrairaegui,Jakob Nikolas Kather,Christophe Klein,Ismaïl Labgaa,Sonia Lameiras,Patricia Legoix,Marie Lequoy,Howard Ho‐Wai Leung,Nicolas Loménie,Marco Maggioni,Pascale Maillé,Juan Ignacio Marín,Guillermo Mendoza-Pacas,Sophie Michalak,Beatriz Mínguez,Omar S.M. El Nahhas,Antonia Digklia,Pooja Navale,Massih Ningarhari,Tung‐Hung Su,María Reig,Jean‐Michel Pawlotsky,Federica Pedica,Riccardo Perbellini,Nguyen H. Tran,Bernhard Scheiner,Christine Sempoux,Pompilia Radu,Hélène Regnault,María Reig,Mohamed Rela,Hélène Regnault,Lorenza Rimassa,Margherita Rimini,María Teresa Salcedo,Bruno Sangro,Bruno Sangro,Christine Sempoux,Tung‐Hung Su,Callie Torres,Nguyen H. Tran,Eric Trépo,Marı́a Varela,Gontran Verset,Mukul Vij,Arndt Vogel,Dominique Wendum,Qinghe Zeng,Qinghe Zeng,Josepmaría Argemí,Nicolas Loménie,Antonia Digklia,Pompilia Radu,Hélène Regnault,María Reig,Mercedes Iñarrairaegui,Hyungjin Rhee,Lorenza Rimassa,Bruno Sangro,María Teresa Salcedo,Bruno Sangro,Bernhard Scheiner,Christine Sempoux,Tung‐Hung Su,Aurélie Beaufrère,Nguyen H. Tran,Lorenza Rimassa,Marı́a Varela,Arndt Vogel,Sophie Michalak,Arndt Vogel,Nicolas Loménie,Qinghe Zeng,Julien Caldéraro
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (12): 1411-1422 被引量:32
标识
DOI:10.1016/s1470-2045(23)00468-0
摘要

Background Clinical benefits of atezolizumab plus bevacizumab (atezolizumab–bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab–bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. Methods In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab–bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. Findings Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51–0·68], p<0·0001; biopsy series, r=0·53 [0·40–0·63], p<0·0001). In the 122 patients treated with atezolizumab–bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7–not reached] vs 7 months [4–9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. Interpretation Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab–bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. Funding Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hang发布了新的文献求助10
1秒前
最初发布了新的文献求助10
2秒前
Lesile完成签到,获得积分10
2秒前
竹筏过海应助公西翠萱采纳,获得30
2秒前
2秒前
海子完成签到,获得积分10
3秒前
沉敛一生发布了新的文献求助10
3秒前
柏忆南完成签到 ,获得积分10
3秒前
li发布了新的文献求助10
3秒前
dldddz发布了新的文献求助10
3秒前
jimmy完成签到,获得积分10
3秒前
田様应助侦察兵采纳,获得10
3秒前
鑫渊完成签到,获得积分10
3秒前
天冷了hhhdh完成签到,获得积分10
4秒前
ting完成签到,获得积分10
4秒前
微笑完成签到,获得积分10
4秒前
可爱的函函应助西宁阿采纳,获得30
5秒前
蓝莓松饼发布了新的文献求助10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
高高发布了新的文献求助10
6秒前
一拳一个小欧阳完成签到 ,获得积分10
6秒前
明雨天地完成签到,获得积分10
6秒前
deathmask完成签到 ,获得积分10
6秒前
老实志泽完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
hata完成签到,获得积分10
7秒前
Pangsj完成签到,获得积分10
8秒前
8秒前
青蛙旅行完成签到 ,获得积分10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
9秒前
小马甲应助mimi采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672