Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2310-2322 被引量:4
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光的雪碧完成签到,获得积分10
1秒前
1秒前
意卬发布了新的文献求助10
1秒前
1秒前
Skrkk完成签到 ,获得积分10
1秒前
小鱼儿发布了新的文献求助10
2秒前
2秒前
蛋烘糕完成签到,获得积分10
2秒前
ieeat完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
寒江雪应助鲸落采纳,获得10
4秒前
丘比特应助llll采纳,获得10
4秒前
4秒前
Jasper应助云宝采纳,获得10
4秒前
5秒前
搞怪的芙发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
所所应助黑色二氧化钛采纳,获得10
5秒前
6秒前
小马甲应助缥缈的妙竹采纳,获得10
6秒前
沅沅发布了新的文献求助10
6秒前
6秒前
wonderfulhan发布了新的文献求助20
6秒前
7秒前
打打应助Zzzz1234采纳,获得10
7秒前
7秒前
F_u完成签到,获得积分10
7秒前
管国晶发布了新的文献求助10
8秒前
8秒前
better完成签到,获得积分10
8秒前
科研通AI2S应助wkkky采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435327
求助须知:如何正确求助?哪些是违规求助? 4547445
关于积分的说明 14208426
捐赠科研通 4467598
什么是DOI,文献DOI怎么找? 2448659
邀请新用户注册赠送积分活动 1439552
关于科研通互助平台的介绍 1416204