已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2310-2322 被引量:4
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到 ,获得积分10
1秒前
TIDUS完成签到,获得积分10
2秒前
头上有犄角bb完成签到 ,获得积分10
4秒前
4秒前
莫寻双完成签到,获得积分10
6秒前
6秒前
元儿圆发布了新的文献求助10
8秒前
科研通AI6应助Nikki采纳,获得10
9秒前
大学生完成签到 ,获得积分10
10秒前
a36380382完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
肉肉完成签到 ,获得积分10
13秒前
随机科研完成签到,获得积分10
14秒前
TiAmo完成签到 ,获得积分10
14秒前
15秒前
大方芷文发布了新的文献求助20
16秒前
Dear77完成签到,获得积分10
17秒前
17秒前
清爽乐菱发布了新的文献求助30
17秒前
TIDUS完成签到,获得积分10
18秒前
59发布了新的文献求助10
19秒前
畅快枕头完成签到 ,获得积分0
19秒前
秋老众少年完成签到 ,获得积分10
21秒前
哲别发布了新的文献求助10
22秒前
drwzm完成签到 ,获得积分10
22秒前
Intjer发布了新的文献求助10
23秒前
25秒前
勤恳冰淇淋完成签到 ,获得积分10
27秒前
28秒前
净坛使者完成签到,获得积分10
30秒前
wangyan发布了新的文献求助30
31秒前
木习习完成签到,获得积分10
32秒前
虚幻笑晴发布了新的文献求助10
32秒前
喝橙汁儿吗完成签到 ,获得积分10
33秒前
aki应助xaoi采纳,获得10
34秒前
蘑菇完成签到 ,获得积分10
35秒前
Jasper应助zzyfsh采纳,获得10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511