Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2310-2322 被引量:3
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
啊啊啊完成签到,获得积分10
1秒前
1秒前
海的呼唤发布了新的文献求助10
1秒前
2秒前
兜兜完成签到,获得积分10
2秒前
nlwsp完成签到,获得积分10
3秒前
3秒前
Viikey完成签到,获得积分0
3秒前
3秒前
MiSD完成签到,获得积分10
4秒前
4秒前
4秒前
666完成签到,获得积分10
4秒前
5秒前
最好是完成签到,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
鱼刺鱼刺卡完成签到,获得积分10
5秒前
达达完成签到,获得积分10
5秒前
zw发布了新的文献求助10
6秒前
林白同学完成签到,获得积分20
6秒前
OnionJJ完成签到,获得积分10
6秒前
传奇3应助CSR采纳,获得10
7秒前
浮游应助小池采纳,获得10
7秒前
魏小梅完成签到,获得积分10
8秒前
雷仔完成签到,获得积分10
8秒前
水博士发布了新的文献求助10
8秒前
luke17743508621完成签到 ,获得积分10
8秒前
小皮皮发布了新的文献求助10
8秒前
海的呼唤完成签到,获得积分10
8秒前
干净之槐完成签到,获得积分10
8秒前
老阎应助Jing采纳,获得30
8秒前
高高完成签到,获得积分10
9秒前
zqdfj发布了新的文献求助10
9秒前
10秒前
tdtk发布了新的文献求助10
10秒前
豆豆发布了新的文献求助10
10秒前
小惊麟完成签到,获得积分10
10秒前
james完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337132
求助须知:如何正确求助?哪些是违规求助? 4474409
关于积分的说明 13924084
捐赠科研通 4369249
什么是DOI,文献DOI怎么找? 2400706
邀请新用户注册赠送积分活动 1393793
关于科研通互助平台的介绍 1365629