Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2310-2322 被引量:3
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鹅子完成签到,获得积分10
刚刚
深情安青应助小水滴采纳,获得30
刚刚
Lucas应助丰富飞阳采纳,获得10
刚刚
小蘑菇应助细腻亦巧采纳,获得10
1秒前
英俊的铭应助王哪跑12采纳,获得10
1秒前
HAHA发布了新的文献求助10
1秒前
Dan发布了新的文献求助10
1秒前
走走发布了新的文献求助10
2秒前
2秒前
科研通AI5应助红叶再开采纳,获得20
3秒前
昱旻发布了新的文献求助10
3秒前
科研通AI6应助呆胶布采纳,获得10
3秒前
事事顺利发布了新的文献求助10
4秒前
Ws发布了新的文献求助10
4秒前
4秒前
个性的紫菜应助SAVP采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
无花果应助眯眯眼的老五采纳,获得10
6秒前
隐形曼青应助popo采纳,获得10
6秒前
WLWLW应助Cordero采纳,获得30
6秒前
7秒前
刘大年完成签到,获得积分10
7秒前
苏西完成签到,获得积分10
7秒前
机灵道之完成签到,获得积分10
7秒前
科研通AI6应助sky同学采纳,获得10
8秒前
8秒前
9秒前
lucky完成签到 ,获得积分10
9秒前
Orange应助繁笙采纳,获得10
10秒前
10秒前
小马甲应助大意的飞莲采纳,获得10
11秒前
希望天下0贩的0应助PPD采纳,获得10
11秒前
11秒前
11秒前
toki完成签到,获得积分10
11秒前
浩气长存完成签到 ,获得积分10
12秒前
红岚幽客发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482