Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2310-2322 被引量:4
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得80
刚刚
浮游应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
大个应助科研新星采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
Yiran完成签到,获得积分10
1秒前
1秒前
11完成签到,获得积分10
2秒前
3秒前
shi0331完成签到,获得积分10
4秒前
调皮的代双完成签到 ,获得积分10
4秒前
Jolin完成签到,获得积分10
4秒前
NXZ发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
马家辉完成签到,获得积分10
6秒前
ABC发布了新的文献求助10
6秒前
Sept完成签到,获得积分10
6秒前
小杭76应助todayisirene采纳,获得10
7秒前
科研通AI6应助彩色的盼秋采纳,获得10
8秒前
三水发布了新的文献求助10
9秒前
曾开心发布了新的文献求助10
9秒前
英俊的铭应助火苗采纳,获得10
10秒前
远方如歌完成签到,获得积分10
11秒前
11秒前
啦啦啦啦啦完成签到,获得积分10
11秒前
奋斗含巧完成签到,获得积分10
12秒前
仔仔完成签到,获得积分10
12秒前
领导范儿应助史超采纳,获得10
12秒前
12秒前
14秒前
科研通AI6应助hbhbj采纳,获得10
14秒前
ABC完成签到,获得积分10
14秒前
14秒前
14秒前
三水完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415277
求助须知:如何正确求助?哪些是违规求助? 4531889
关于积分的说明 14130763
捐赠科研通 4447452
什么是DOI,文献DOI怎么找? 2439702
邀请新用户注册赠送积分活动 1431793
关于科研通互助平台的介绍 1409400