Combination of active sensing method and data-driven approach for rubber aging detection

天然橡胶 刚度 剪切(地质) 时域 计算机科学 人工智能 深度学习 频域 材料科学 结构工程 模式识别(心理学) 复合材料 工程类 计算机视觉
作者
Yi Zeng,Tengsheng Chen,Feng Xiong,Kailai Deng,Yuanqing Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2310-2322 被引量:3
标识
DOI:10.1177/14759217231207002
摘要

Rubber bearings are key components of base-isolated structures, and the monitoring of their damage states is an important task. Aging is a primary concern affecting the service life and isolation effect of rubber bearings. Therefore, this study combined an active sensing method and a data-driven approach to detect rubber aging. A shear stiffness, accelerated aging, and active sensing experiments were conducted on a scaled rubber specimen. As the aging level increased, the shear stiffness of the specimens gradually increased from 116.69 to 127.82 N/mm, but this change was not linear. Due to variations in the degree of aging, discrepancies may arise in the time and frequency domain characteristics of detection signals. However, establishing an empirical relationship between the degree of aging and the features of detection signals were highly challenging. A deep-learning-based data-driven method was used to predict the aging level and shear stiffness using detection signals. The deep learning model successfully detected the aging level, and the prediction accuracy on the validation and test sets reached 99.98%. For the deep learning model for aging level prediction, the optimal input vector length is 4096, the recommended number of layers is 3–5, and the recommended number of cells in each layer is 256–2048. Moreover, the deep learning model also detected the shear stiffness of the rubber specimen. The mean absolute error was 0.27 N/mm on the validation set and 0.28 N/mm on the test set. For the deep learning model for shear stiffness prediction, the optimal input vector length is 4096, and the optimal structure is seven layers with 2048 cells in each layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的火完成签到 ,获得积分10
3秒前
CosnEdge完成签到,获得积分10
8秒前
风中悟空完成签到 ,获得积分10
9秒前
萧瑟秋风今又是完成签到 ,获得积分10
9秒前
16秒前
落尘完成签到 ,获得积分10
16秒前
一一完成签到 ,获得积分10
24秒前
淡然的芷荷完成签到 ,获得积分10
25秒前
mix完成签到 ,获得积分10
26秒前
Maestro_S应助科研通管家采纳,获得10
28秒前
Maestro_S应助科研通管家采纳,获得10
28秒前
寻找组织应助科研通管家采纳,获得10
28秒前
Maestro_S应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
CR7应助科研通管家采纳,获得20
28秒前
勤奋的冬萱完成签到,获得积分10
28秒前
Maestro_S应助科研通管家采纳,获得10
28秒前
Maestro_S应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
william完成签到 ,获得积分10
31秒前
英姑应助fmh采纳,获得30
33秒前
知性的夏槐完成签到 ,获得积分10
34秒前
我不到啊完成签到 ,获得积分10
35秒前
35秒前
Eric完成签到,获得积分10
36秒前
Ray完成签到,获得积分10
36秒前
你好纠结伦完成签到,获得积分10
37秒前
DanaLin完成签到,获得积分10
37秒前
38秒前
xxfsx应助不安青牛采纳,获得10
39秒前
轴承完成签到 ,获得积分10
39秒前
哎呀哎呀呀完成签到,获得积分10
41秒前
你才是小哭包完成签到 ,获得积分10
44秒前
XRH完成签到,获得积分10
45秒前
遇见完成签到 ,获得积分10
45秒前
鑫鑫完成签到,获得积分10
46秒前
Liming完成签到,获得积分10
49秒前
山高月小完成签到 ,获得积分10
49秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561