Deep carbonate reservoir characterization using multiseismic attributes: A comparison of unsupervised machine-learning approaches

储层建模 自编码 地震模拟 地质学 地震属性 地震反演 主成分分析 人工智能 无监督学习 模式识别(心理学) 深度学习 地震学 计算机科学 岩土工程 古生物学 数据同化 物理 构造盆地 气象学
作者
Luanxiao Zhao,Xuanying Zhu,Xiangyuan Zhao,Yuchun You,Minghui Xu,Tengfei Wang,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): B65-B82 被引量:1
标识
DOI:10.1190/geo2023-0199.1
摘要

Seismic reservoir characterization is of great interest for sweet spot identification, reservoir quality assessment, and geologic model building. The sparsity of the labeled samples often limits the application of supervised machine learning (ML) for seismic reservoir characterization. Unsupervised learning methods, in contrast, explore the internal structure of data and extract low-dimensional features of geologic interest from seismic data without the need for labels. We compare various unsupervised learning approaches, including the linear method of principal component analysis (PCA), the manifold learning methods of t-distributed stochastic neighbor embedding and uniform manifold approximation and projection (UMAP), and the convolutional autoencoder (CAE), on the 3D synthetic and field seismic data of a deep carbonate reservoir in southwest China. On the synthetic data, the low-dimensional features extracted by UMAP and CAE provide a better indication of porosity and gas saturation than traditional seismic attributes. In particular, UMAP better preserves the global structure of geologic features and indicates the potential of decoupling the gas saturation and porosity effects from seismic responses. We demonstrate that joint use of several types of seismic attributes, instead of using a single type of seismic attributes, can better delineate the reservoir structures using unsupervised ML. On the field seismic data, UMAP can effectively characterize the sedimentary facies distribution, which is consistent with the geologic understanding. Nevertheless, the porosity and saturation can not be reliably identified from field seismic data using unsupervised ML, which is likely caused by the complex pore structures in carbonates complicating the mapping relationship between seismic responses and reservoir parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fsf完成签到,获得积分10
1秒前
幸福的向彤完成签到,获得积分10
2秒前
打打应助WangT采纳,获得10
2秒前
2秒前
思思完成签到 ,获得积分10
3秒前
卢莹完成签到,获得积分10
4秒前
wwww完成签到,获得积分10
5秒前
zzqblue完成签到,获得积分20
6秒前
山复尔尔应助TYJ采纳,获得10
6秒前
6秒前
snail01完成签到,获得积分10
6秒前
悄悄发布了新的文献求助10
6秒前
6秒前
淡然冬灵发布了新的文献求助10
8秒前
xqxqxqxqxqx完成签到,获得积分10
9秒前
彭于晏应助研友_Ze0vBn采纳,获得10
11秒前
迷路的依波完成签到,获得积分10
11秒前
lili完成签到 ,获得积分10
12秒前
慕青应助牛牛眉目采纳,获得10
12秒前
安详凡发布了新的文献求助10
12秒前
13秒前
14秒前
Orange应助Aria采纳,获得10
14秒前
一直发布了新的文献求助10
19秒前
情怀应助月yue采纳,获得10
20秒前
WangT发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
2333完成签到,获得积分10
23秒前
胡霖完成签到,获得积分10
25秒前
顾矜应助ljx采纳,获得10
26秒前
N型半导体发布了新的文献求助10
26秒前
Yuki0616完成签到,获得积分10
27秒前
小鸭飞发布了新的文献求助10
27秒前
WangT完成签到,获得积分10
28秒前
领导范儿应助N型半导体采纳,获得10
30秒前
30秒前
30秒前
悟空发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357