Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks

计算机科学 空间分析 图形 空间语境意识 嵌入 背景(考古学) 人工智能 数据挖掘 理论计算机科学 模式识别(心理学) 数学 生物 统计 古生物学
作者
Xuejing Shi,Jing Zhu,Yahui Long,Longdi Cheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad278
摘要

Abstract Motivation: Recent advances in spatially resolved transcriptomics (ST) technologies enable the measurement of gene expression profiles while preserving cellular spatial context. Linking gene expression of cells with their spatial distribution is essential for better understanding of tissue microenvironment and biological progress. However, effectively combining gene expression data with spatial information to identify spatial domains remains challenging. Results: To deal with the above issue, in this paper, we propose a novel unsupervised learning framework named STMGCN for identifying spatial domains using multi-view graph convolution networks (MGCNs). Specifically, to fully exploit spatial information, we first construct multiple neighbor graphs (views) with different similarity measures based on the spatial coordinates. Then, STMGCN learns multiple view-specific embeddings by combining gene expressions with each neighbor graph through graph convolution networks. Finally, to capture the importance of different graphs, we further introduce an attention mechanism to adaptively fuse view-specific embeddings and thus derive the final spot embedding. STMGCN allows for the effective utilization of spatial context to enhance the expressive power of the latent embeddings with multiple graph convolutions. We apply STMGCN on two simulation datasets and five real spatial transcriptomics datasets with different resolutions across distinct platforms. The experimental results demonstrate that STMGCN obtains competitive results in spatial domain identification compared with five state-of-the-art methods, including spatial and non-spatial alternatives. Besides, STMGCN can detect spatially variable genes with enriched expression patterns in the identified domains. Overall, STMGCN is a powerful and efficient computational framework for identifying spatial domains in spatial transcriptomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYN完成签到 ,获得积分10
刚刚
搜集达人应助永远的阿科采纳,获得20
1秒前
SYLH应助蔡从安采纳,获得10
1秒前
3秒前
照镜子丫dorime完成签到,获得积分10
5秒前
奉雨眠完成签到,获得积分10
5秒前
埋头苦干科研完成签到,获得积分10
6秒前
闫栋完成签到 ,获得积分10
6秒前
稳重的秋天完成签到,获得积分20
8秒前
8秒前
坐雨赏花完成签到 ,获得积分10
8秒前
文献狗完成签到,获得积分10
8秒前
DMMM完成签到,获得积分10
9秒前
day_on完成签到,获得积分10
9秒前
车非笑完成签到,获得积分10
9秒前
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
王二哈完成签到,获得积分10
11秒前
芝麻福福完成签到,获得积分10
11秒前
曼夭非夭完成签到,获得积分10
12秒前
wang完成签到,获得积分10
13秒前
xue完成签到 ,获得积分10
13秒前
zhang完成签到,获得积分10
14秒前
14秒前
小啊刘呀发布了新的文献求助10
15秒前
俍璟完成签到 ,获得积分10
15秒前
cistronic完成签到,获得积分10
15秒前
薄荷草莓糖完成签到,获得积分10
16秒前
HCN完成签到,获得积分10
16秒前
兴奋的万声完成签到,获得积分10
16秒前
自由如天完成签到,获得积分10
17秒前
少女徐必成完成签到 ,获得积分10
18秒前
吕圆圆圆啊完成签到,获得积分10
19秒前
科目三应助承乐采纳,获得10
19秒前
向阳发布了新的文献求助10
19秒前
20秒前
Raki完成签到,获得积分10
21秒前
haly完成签到 ,获得积分10
23秒前
demoestar完成签到 ,获得积分10
23秒前
hero_ljw完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839