亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning

子痫前期 医学 回顾性队列研究 人口 医学诊断 预测建模 队列 妊娠期 产科 怀孕 入射(几何) 机器学习 内科学 计算机科学 数学 环境卫生 遗传学 病理 生物 几何学
作者
Braden W Eberhard,Raphael Y. Cohen,John Rigoni,David W. Bates,Kathryn J. Gray,Vesela Kovacheva
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.08.16.23293946
摘要

SUMMARY Background Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension after 20 weeks of gestation that affects 2-8% of all pregnancies and contributes to up to 26% of maternal deaths. Despite extensive clinical research, current predictive tools fail to identify up to 66% of patients who will develop preeclampsia. We sought to develop a tool to longitudinally predict preeclampsia risk. Methods In this retrospective model development and validation study, we examined a large cohort of patients who delivered at six community and two tertiary care hospitals in the New England region between 02/2015 and 06/2023. We used sociodemographic, clinical diagnoses, family history, laboratory, and vital signs data. We developed eight datasets at 14, 20, 24, 28, 32, 36, 39 weeks gestation and at the hospital admission for delivery. We created linear regression, random forest, xgboost, and deep neural networks to develop multiple models and compared their performance. We used Shapley values to investigate the global and local explainability of the models and the relationships between the predictive variables. Findings Our study population (N=120,752) had an incidence of preeclampsia of 5.7% (N=6,920). The performance of the models as measured using the area under the curve, AUC, was in the range 0.73-0.91, which was externally validated. The relationships between some of the variables were complex and non-linear; in addition, the relative significance of the predictors varied over the pregnancy. Compared to the current standard of care for preeclampsia risk stratification in the first trimester, our model would allow 48.6% more at-risk patients to be identified. Interpretation Our novel preeclampsia prediction tool would allow clinicians to identify patients at risk early and provide personalized predictions, as well as longitudinal predictions throughout pregnancy. Funding National Institutes of Health, Anesthesia Patient Safety Foundation. RESEARCH IN CONTEXT Evidence before this study Current tools for the prediction of preeclampsia are lacking as they fail to identify up to 66% of the patients who develop preeclampsia. We searched PubMed, MEDLINE, and the Web of Science from database inception to May 1, 2023, using the keywords “deep learning”, “machine learning”, “preeclampsia”, “artificial intelligence”, “pregnancy complications”, and “predictive models”. We identified 13 studies that employed machine learning to develop prediction models for preeclampsia risk based on clinical variables. Among these studies, six included biomarkers such as serum placental growth factor, pregnancy-associated plasma protein A, and uterine artery pulsatility index, which are not routinely available in our clinical practice; two studies were in diverse cohorts of more than 100 000 patients, and two studies developed longitudinal predictions using medical records data. However, most studies have limited depth, concerns about data leakage, overfitting, or lack of generalizability. Added value of this study We developed a comprehensive longitudinal predictive tool based on routine clinical data that can be used throughout pregnancy to predict the risk of preeclampsia. We tested multiple types of predictive models, including machine learning and deep learning models, and demonstrated high predictive power. We investigated the changes over different time points of individual and group variables and found previously known and novel relationships between variables such as red blood cell count and preeclampsia risk. Implications of all the available evidence Longitudinal prediction of preeclampsia using machine learning can be achieved with high performance. Implementation of an accurate predictive tool within the electronic health records can aid clinical care and identify patients at heightened risk who would benefit from aspirin prophylaxis, increased surveillance, early diagnosis, and escalation in care. These results highlight the potential of using artificial intelligence in clinical decision support, with the ultimate goal of reducing iatrogenic preterm birth and improving perinatal care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶叙汤言完成签到,获得积分10
4秒前
温暖的盼山应助mmyhn采纳,获得10
13秒前
20秒前
小_n发布了新的文献求助10
23秒前
逗逗完成签到,获得积分10
39秒前
40秒前
42秒前
张张完成签到 ,获得积分10
44秒前
卡布发布了新的文献求助10
45秒前
yangon发布了新的文献求助10
45秒前
fly完成签到 ,获得积分10
49秒前
52秒前
Captain发布了新的文献求助10
54秒前
Ava应助jfuU采纳,获得10
1分钟前
Ava应助jfuU采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
John完成签到,获得积分10
1分钟前
yangon完成签到,获得积分10
1分钟前
CipherSage应助uu采纳,获得10
1分钟前
yanhan2009发布了新的文献求助40
1分钟前
李爱国应助别急我先送采纳,获得10
1分钟前
zhong发布了新的文献求助10
1分钟前
1分钟前
2分钟前
Nancy0818完成签到,获得积分10
2分钟前
李健的粉丝团团长应助xxy采纳,获得100
2分钟前
lonely完成签到,获得积分10
2分钟前
2分钟前
uu发布了新的文献求助10
2分钟前
lkk183完成签到 ,获得积分10
2分钟前
杉进完成签到 ,获得积分10
2分钟前
lonely发布了新的文献求助10
2分钟前
abc完成签到 ,获得积分10
2分钟前
Jerry发布了新的文献求助20
2分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126059
求助须知:如何正确求助?哪些是违规求助? 2776259
关于积分的说明 7729655
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292201
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392