A transformer-based dual-domain network for reconstructing FOV extended cone-beam CT images from truncated sinograms in radiation therapy

人工智能 计算机视觉 计算机科学 迭代重建 锥束ct 投影(关系代数) 图像复原 特征(语言学) 数学 模式识别(心理学) 图像处理 图像(数学) 算法 计算机断层摄影术 医学 放射科 哲学 语言学
作者
Liugang Gao,Kai Xie,Jiawei Sun,Tao Lin,Jianfeng Sui,Guanyu Yang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107767-107767 被引量:3
标识
DOI:10.1016/j.cmpb.2023.107767
摘要

Cone-beam computed tomography (CBCT) is widely used in clinical radiotherapy, but its small field of view (sFOV) limits its application potential. In this study, a transformer-based dual-domain network (dual_swin), which combined image domain restoration and sinogram domain restoration, was proposed for the reconstruction of complete CBCT images with extended FOV from truncated sinograms.The planning CT images with large FOV (LFOV) of 330 patients who received radiation therapy were collected. The synthetic CBCT (sCBCT) images with LFOV were generated from CT images by the trained cycleGAN network, and CBCT images with sFOV were obtained through forward projection, projection truncation, and filtered back projection (FBP), comprising the training and test data. The proposed dual_swin includes sinogram domain restoration, image domain restoration, and FBP layer, and the swin transformer blocks were used as the basic feature extraction module in the network to improve the global feature extraction ability. The proposed dual_swin was compared with the image domain method, the sinogram domain method, the U-Net based dual domain network (dual_Unet), and the traditional iterative reconstruction method based on prior image and conjugate gradient least-squares (CGLS) in the test of sCBCT images and clinical CBCT images. The HU accuracy and body contour accuracy of the predicted images by each method were evaluated.The images generated using the CGLS method were fuzzy and obtained the lowest structural similarity (SSIM) among all methods in the test of sCBCT and clinical CBCT images. The predicted images by the image domain methods are quite different from the ground truth and have low accuracy on HU value and body contour. In comparison with image domain methods, sinogram domain methods improved the accuracy of HU value and body contour but introduced secondary artifacts and distorted bone tissue. The proposed dual_swin achieved the highest HU and contour accuracy with mean absolute error (MAE) of 23.0 HU, SSIM of 95.7%, dice similarity coefficient (DSC) of 99.6%, and Hausdorff distance (HD) of 4.1 mm in the test of sCBCT images. In the test of clinical patients, images that were predicted by dual_swin yielded MAE, SSIM, DSC, and HD of 38.2 HU, 91.7%, 99.0%, and 5.4 mm, respectively. The predicted images by the proposed dual_swin has significantly higher accuracy than the other methods (P < 0.05).The proposed dual_swin can accurately reconstruct FOV extended CBCT images from the truncated sinogram to improve the application potential of CBCT images in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星完成签到 ,获得积分10
2秒前
最棒的小羊完成签到 ,获得积分10
2秒前
alpha发布了新的文献求助10
4秒前
研究菜鸟发布了新的文献求助10
4秒前
5秒前
7秒前
合适一斩完成签到,获得积分10
8秒前
13369932259完成签到,获得积分10
9秒前
santory应助jwjzsznb采纳,获得10
10秒前
xxszyb完成签到,获得积分10
10秒前
无限飞烟完成签到,获得积分10
10秒前
冷静妙梦发布了新的文献求助10
12秒前
bbsheng完成签到,获得积分10
12秒前
13秒前
星星完成签到 ,获得积分10
13秒前
市民7发布了新的文献求助10
14秒前
李健应助消烦员采纳,获得30
15秒前
Jrssion发布了新的文献求助10
17秒前
18秒前
19秒前
ChenYX发布了新的文献求助20
19秒前
烟花应助美海与鱼采纳,获得10
20秒前
多情立辉发布了新的文献求助10
21秒前
贾克斯完成签到,获得积分20
21秒前
谨慎雪碧发布了新的文献求助10
22秒前
冷静妙梦完成签到,获得积分10
23秒前
25秒前
金元宝完成签到,获得积分10
26秒前
痴痴的噜完成签到,获得积分10
27秒前
lll应助小玲子采纳,获得10
27秒前
29秒前
hmhu完成签到,获得积分10
29秒前
natmed应助ChenYX采纳,获得10
30秒前
32秒前
hmhu发布了新的文献求助10
32秒前
32秒前
万能图书馆应助琉寒采纳,获得10
33秒前
壮观的寒松应助starryskyjia采纳,获得20
33秒前
朝圣者发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408