A transformer-based dual-domain network for reconstructing FOV extended cone-beam CT images from truncated sinograms in radiation therapy

人工智能 计算机视觉 计算机科学 迭代重建 锥束ct 投影(关系代数) 图像复原 特征(语言学) 数学 模式识别(心理学) 图像处理 图像(数学) 算法 计算机断层摄影术 医学 放射科 哲学 语言学
作者
Liugang Gao,Kai Xie,Jiawei Sun,Tao Lin,Jianfeng Sui,Guanyu Yang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107767-107767 被引量:3
标识
DOI:10.1016/j.cmpb.2023.107767
摘要

Cone-beam computed tomography (CBCT) is widely used in clinical radiotherapy, but its small field of view (sFOV) limits its application potential. In this study, a transformer-based dual-domain network (dual_swin), which combined image domain restoration and sinogram domain restoration, was proposed for the reconstruction of complete CBCT images with extended FOV from truncated sinograms.The planning CT images with large FOV (LFOV) of 330 patients who received radiation therapy were collected. The synthetic CBCT (sCBCT) images with LFOV were generated from CT images by the trained cycleGAN network, and CBCT images with sFOV were obtained through forward projection, projection truncation, and filtered back projection (FBP), comprising the training and test data. The proposed dual_swin includes sinogram domain restoration, image domain restoration, and FBP layer, and the swin transformer blocks were used as the basic feature extraction module in the network to improve the global feature extraction ability. The proposed dual_swin was compared with the image domain method, the sinogram domain method, the U-Net based dual domain network (dual_Unet), and the traditional iterative reconstruction method based on prior image and conjugate gradient least-squares (CGLS) in the test of sCBCT images and clinical CBCT images. The HU accuracy and body contour accuracy of the predicted images by each method were evaluated.The images generated using the CGLS method were fuzzy and obtained the lowest structural similarity (SSIM) among all methods in the test of sCBCT and clinical CBCT images. The predicted images by the image domain methods are quite different from the ground truth and have low accuracy on HU value and body contour. In comparison with image domain methods, sinogram domain methods improved the accuracy of HU value and body contour but introduced secondary artifacts and distorted bone tissue. The proposed dual_swin achieved the highest HU and contour accuracy with mean absolute error (MAE) of 23.0 HU, SSIM of 95.7%, dice similarity coefficient (DSC) of 99.6%, and Hausdorff distance (HD) of 4.1 mm in the test of sCBCT images. In the test of clinical patients, images that were predicted by dual_swin yielded MAE, SSIM, DSC, and HD of 38.2 HU, 91.7%, 99.0%, and 5.4 mm, respectively. The predicted images by the proposed dual_swin has significantly higher accuracy than the other methods (P < 0.05).The proposed dual_swin can accurately reconstruct FOV extended CBCT images from the truncated sinogram to improve the application potential of CBCT images in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助郝浓毅采纳,获得10
刚刚
36456657应助哦耶采纳,获得10
刚刚
圣诞结发布了新的文献求助10
刚刚
完美世界应助523采纳,获得10
刚刚
刚刚
Corundum发布了新的文献求助10
1秒前
曹文强完成签到,获得积分10
1秒前
彭于晏应助芸苔AA采纳,获得10
1秒前
优秀雁荷发布了新的文献求助10
2秒前
孙伟健发布了新的文献求助10
2秒前
帆帆发布了新的文献求助10
2秒前
2秒前
3秒前
orixero应助wsn采纳,获得10
3秒前
3秒前
锤你发布了新的文献求助10
4秒前
4秒前
4秒前
MY应助轻风采纳,获得10
4秒前
淡定乐天完成签到 ,获得积分10
5秒前
专注狸狸完成签到 ,获得积分10
5秒前
川农辅导员完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
丘比特应助阳光的笑卉采纳,获得10
6秒前
求rrr完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
egnaro发布了新的文献求助10
7秒前
牛马学生完成签到,获得积分10
7秒前
8秒前
严念桃发布了新的文献求助10
8秒前
欧阳完成签到,获得积分10
9秒前
YMH完成签到,获得积分10
9秒前
什么什么哇偶完成签到 ,获得积分10
9秒前
粗暴的夏旋完成签到,获得积分10
9秒前
养叶子发布了新的文献求助10
10秒前
哭泣的书兰完成签到,获得积分20
10秒前
MARIO完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661525
求助须知:如何正确求助?哪些是违规求助? 4838950
关于积分的说明 15096313
捐赠科研通 4820245
什么是DOI,文献DOI怎么找? 2579795
邀请新用户注册赠送积分活动 1534060
关于科研通互助平台的介绍 1492773