A transformer-based dual-domain network for reconstructing FOV extended cone-beam CT images from truncated sinograms in radiation therapy

人工智能 计算机视觉 计算机科学 迭代重建 锥束ct 投影(关系代数) 图像复原 特征(语言学) 数学 模式识别(心理学) 图像处理 图像(数学) 算法 计算机断层摄影术 医学 放射科 语言学 哲学
作者
Liugang Gao,Kai Xie,Jiawei Sun,Tao Lin,Jianfeng Sui,Guanyu Yang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107767-107767 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107767
摘要

Cone-beam computed tomography (CBCT) is widely used in clinical radiotherapy, but its small field of view (sFOV) limits its application potential. In this study, a transformer-based dual-domain network (dual_swin), which combined image domain restoration and sinogram domain restoration, was proposed for the reconstruction of complete CBCT images with extended FOV from truncated sinograms.The planning CT images with large FOV (LFOV) of 330 patients who received radiation therapy were collected. The synthetic CBCT (sCBCT) images with LFOV were generated from CT images by the trained cycleGAN network, and CBCT images with sFOV were obtained through forward projection, projection truncation, and filtered back projection (FBP), comprising the training and test data. The proposed dual_swin includes sinogram domain restoration, image domain restoration, and FBP layer, and the swin transformer blocks were used as the basic feature extraction module in the network to improve the global feature extraction ability. The proposed dual_swin was compared with the image domain method, the sinogram domain method, the U-Net based dual domain network (dual_Unet), and the traditional iterative reconstruction method based on prior image and conjugate gradient least-squares (CGLS) in the test of sCBCT images and clinical CBCT images. The HU accuracy and body contour accuracy of the predicted images by each method were evaluated.The images generated using the CGLS method were fuzzy and obtained the lowest structural similarity (SSIM) among all methods in the test of sCBCT and clinical CBCT images. The predicted images by the image domain methods are quite different from the ground truth and have low accuracy on HU value and body contour. In comparison with image domain methods, sinogram domain methods improved the accuracy of HU value and body contour but introduced secondary artifacts and distorted bone tissue. The proposed dual_swin achieved the highest HU and contour accuracy with mean absolute error (MAE) of 23.0 HU, SSIM of 95.7%, dice similarity coefficient (DSC) of 99.6%, and Hausdorff distance (HD) of 4.1 mm in the test of sCBCT images. In the test of clinical patients, images that were predicted by dual_swin yielded MAE, SSIM, DSC, and HD of 38.2 HU, 91.7%, 99.0%, and 5.4 mm, respectively. The predicted images by the proposed dual_swin has significantly higher accuracy than the other methods (P < 0.05).The proposed dual_swin can accurately reconstruct FOV extended CBCT images from the truncated sinogram to improve the application potential of CBCT images in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc20231022完成签到,获得积分10
刚刚
1秒前
搜集达人应助小乔同学采纳,获得10
2秒前
Xuezi给直率萌的求助进行了留言
2秒前
晾猫人发布了新的文献求助10
2秒前
3秒前
5秒前
7秒前
华华完成签到,获得积分10
8秒前
在水一方发布了新的文献求助10
10秒前
小马甲应助小浪浪采纳,获得10
10秒前
难过代双完成签到,获得积分10
11秒前
echoabc完成签到,获得积分20
12秒前
CR完成签到 ,获得积分10
13秒前
15秒前
15秒前
小天发布了新的文献求助30
16秒前
刘敏小七发布了新的文献求助10
17秒前
18秒前
18秒前
思源应助猴子没有壳采纳,获得10
19秒前
20秒前
乔心发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
小浪浪发布了新的文献求助10
22秒前
搜集达人应助乔心采纳,获得10
23秒前
mimi完成签到,获得积分20
24秒前
在水一方完成签到,获得积分10
24秒前
25秒前
zqg驳回了tuanheqi应助
25秒前
小乔同学发布了新的文献求助10
25秒前
25秒前
25秒前
刘快乐发布了新的文献求助10
26秒前
29秒前
不发Q1不改名完成签到,获得积分10
30秒前
周冬利发布了新的文献求助10
31秒前
兼听则明完成签到,获得积分10
32秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422301
求助须知:如何正确求助?哪些是违规求助? 3022634
关于积分的说明 8901789
捐赠科研通 2710031
什么是DOI,文献DOI怎么找? 1486283
科研通“疑难数据库(出版商)”最低求助积分说明 686983
邀请新用户注册赠送积分活动 682206