Unsupervised Domain Factorization Network for Thick Cloud Removal of Multitemporal Remotely Sensed Images

计算机科学 云计算 因子(编程语言) 高光谱成像 遥感 空间分析 人工智能 地质学 程序设计语言 操作系统
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要

Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助keyab采纳,获得10
刚刚
刚刚
yiyi完成签到,获得积分10
1秒前
NING发布了新的文献求助10
1秒前
8D发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
上官若男应助SCO采纳,获得10
2秒前
2秒前
幽默的乐安完成签到 ,获得积分10
2秒前
努力奋斗完成签到,获得积分10
3秒前
善学以致用应助郭敬一采纳,获得10
3秒前
3molcao发布了新的文献求助10
3秒前
Ava应助冉遗采纳,获得10
3秒前
4秒前
ireswork发布了新的文献求助10
4秒前
4秒前
5秒前
明理夏槐发布了新的文献求助10
5秒前
出云天花完成签到,获得积分10
5秒前
玉玉发布了新的文献求助10
5秒前
领导范儿应助追寻的立辉采纳,获得10
6秒前
yyy发布了新的文献求助30
6秒前
zhu完成签到,获得积分10
7秒前
agnehc发布了新的文献求助10
7秒前
沙瑞金完成签到,获得积分10
7秒前
momi发布了新的文献求助10
7秒前
李爱国应助易玟采纳,获得10
7秒前
科研剧中人完成签到,获得积分10
7秒前
8秒前
鲍惜寒完成签到 ,获得积分20
8秒前
8秒前
风秀完成签到,获得积分10
8秒前
聪明紫山完成签到,获得积分10
9秒前
小周发布了新的文献求助10
9秒前
生言生语完成签到,获得积分10
9秒前
lovence完成签到,获得积分10
10秒前
灵梦柠檬酸完成签到,获得积分10
11秒前
11秒前
李健应助tracer采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233