Unsupervised Domain Factorization Network for Thick Cloud Removal of Multitemporal Remotely Sensed Images

计算机科学 云计算 因子(编程语言) 高光谱成像 遥感 空间分析 人工智能 地质学 程序设计语言 操作系统
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要

Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力夜雪完成签到,获得积分10
刚刚
缥缈哈密瓜完成签到,获得积分10
1秒前
Yiii发布了新的文献求助10
2秒前
2秒前
我是老大应助大迷糊采纳,获得10
2秒前
吕培森发布了新的文献求助10
2秒前
lalala应助清脆依白采纳,获得10
2秒前
2秒前
Akim应助幸福的丑采纳,获得30
3秒前
shjcold完成签到,获得积分10
3秒前
rover完成签到 ,获得积分10
3秒前
5秒前
婉孝发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
上官小怡发布了新的文献求助10
7秒前
Anima应助哔哩哔哩采纳,获得10
7秒前
7秒前
澎鱼盐发布了新的文献求助10
7秒前
8秒前
以水为师完成签到 ,获得积分10
8秒前
lyy给lyy的求助进行了留言
8秒前
我不理解完成签到,获得积分10
8秒前
FashionBoy应助帆布鞋采纳,获得10
9秒前
希望天下0贩的0应助玄音采纳,获得10
9秒前
任寒松发布了新的文献求助10
9秒前
比卜不发布了新的文献求助10
9秒前
完美完成签到,获得积分10
10秒前
机灵的夜梦完成签到 ,获得积分10
10秒前
10秒前
烟花应助橘落采纳,获得10
10秒前
10秒前
10秒前
11秒前
WoeL.Aug.11发布了新的文献求助10
11秒前
纷雪发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369