计算机科学
云计算
因子(编程语言)
高光谱成像
遥感
空间分析
人工智能
地质学
操作系统
程序设计语言
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-12
被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要
Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI