Unsupervised Domain Factorization Network for Thick Cloud Removal of Multitemporal Remotely Sensed Images

计算机科学 云计算 因子(编程语言) 高光谱成像 遥感 空间分析 人工智能 地质学 操作系统 程序设计语言
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要

Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄惜文发布了新的文献求助10
1秒前
2秒前
2秒前
黙宇循光发布了新的文献求助10
2秒前
3秒前
5秒前
顾矜应助一城烟雨采纳,获得10
6秒前
HCLonely应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得28
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
良辰应助科研通管家采纳,获得10
7秒前
良辰应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
19应助科研通管家采纳,获得30
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
7秒前
ferrycake应助科研通管家采纳,获得20
7秒前
HCLonely应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
8秒前
HCLonely应助科研通管家采纳,获得10
8秒前
huajinoob发布了新的文献求助30
8秒前
8秒前
饭老师发布了新的文献求助30
9秒前
xun发布了新的文献求助10
10秒前
川川完成签到,获得积分10
12秒前
笨笨娇完成签到 ,获得积分10
14秒前
Sean完成签到,获得积分10
14秒前
搜集达人应助xun采纳,获得10
17秒前
20秒前
聪明的怜南完成签到,获得积分10
20秒前
Jack80应助ho2eu采纳,获得50
23秒前
24秒前
标致溪流发布了新的文献求助10
28秒前
山黛Liebe完成签到,获得积分10
29秒前
重要的小猫咪完成签到,获得积分10
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529341
捐赠科研通 2621879
什么是DOI,文献DOI怎么找? 1434209
科研通“疑难数据库(出版商)”最低求助积分说明 665170
邀请新用户注册赠送积分活动 650738