亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Domain Factorization Network for Thick Cloud Removal of Multitemporal Remotely Sensed Images

计算机科学 云计算 因子(编程语言) 高光谱成像 遥感 空间分析 人工智能 地质学 程序设计语言 操作系统
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要

Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1461644768完成签到,获得积分10
2秒前
TongKY完成签到 ,获得积分10
4秒前
CodeCraft应助桃子e采纳,获得10
10秒前
15秒前
李剑鸿完成签到,获得积分10
19秒前
nnnty发布了新的文献求助10
22秒前
英姑应助科研通管家采纳,获得10
26秒前
轻松大王应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
轻松大王应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Joeswith完成签到,获得积分10
36秒前
香蕉觅云应助oasis采纳,获得10
43秒前
46秒前
49秒前
俊逸沛菡发布了新的文献求助10
56秒前
1分钟前
SciGPT应助Jin采纳,获得80
1分钟前
sunny完成签到,获得积分10
1分钟前
1分钟前
烤鱼不裹面包完成签到 ,获得积分10
1分钟前
归尘发布了新的文献求助30
1分钟前
1分钟前
JamesPei应助快乐的冰淇淋采纳,获得10
1分钟前
violet发布了新的文献求助10
1分钟前
清爽的如波应助andrele采纳,获得10
1分钟前
王越发布了新的文献求助10
1分钟前
烟花应助桃子e采纳,获得10
1分钟前
1分钟前
oasis发布了新的文献求助10
1分钟前
1分钟前
今后应助桃子e采纳,获得10
1分钟前
淡然绝山发布了新的文献求助10
1分钟前
Tree_QD完成签到 ,获得积分10
2分钟前
科研通AI6.1应助桃子e采纳,获得10
2分钟前
Lisheng000应助淡然绝山采纳,获得10
2分钟前
2分钟前
2分钟前
王越完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788402
求助须知:如何正确求助?哪些是违规求助? 5707227
关于积分的说明 15473503
捐赠科研通 4916475
什么是DOI,文献DOI怎么找? 2646376
邀请新用户注册赠送积分活动 1594035
关于科研通互助平台的介绍 1548473