An expandable machine learning-optimization framework to sequential decision-making

背包问题 数学优化 计算机科学 启发式 一般化 解算器 最优化问题 人工神经网络 整数规划 人工智能 算法 数学 数学分析
作者
Dogacan Yilmaz,İ. Esra Büyüktahtakın
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:314 (1): 280-296 被引量:5
标识
DOI:10.1016/j.ejor.2023.10.045
摘要

We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder–decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deway发布了新的文献求助10
刚刚
Zhjie126发布了新的文献求助10
1秒前
1秒前
1秒前
陆丰完成签到 ,获得积分10
2秒前
CipherSage应助福1采纳,获得10
2秒前
怕黑思山完成签到,获得积分10
2秒前
renpp822发布了新的文献求助30
2秒前
传奇3应助烟岚采纳,获得10
3秒前
石会发发布了新的文献求助10
5秒前
飞快的从丹完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
hahahaha发布了新的文献求助10
12秒前
ak24765发布了新的文献求助10
13秒前
15秒前
的荟完成签到,获得积分10
16秒前
大模型应助无钱采纳,获得10
16秒前
16秒前
17秒前
gky完成签到,获得积分10
17秒前
18秒前
丽娜发布了新的文献求助10
19秒前
19秒前
lyw完成签到 ,获得积分10
20秒前
20秒前
20秒前
思源应助Shi采纳,获得10
20秒前
的荟发布了新的文献求助10
21秒前
Plucky完成签到,获得积分10
21秒前
滚滚完成签到,获得积分10
21秒前
大模型应助淡淡的南风采纳,获得10
22秒前
22秒前
星辰大海应助书晨采纳,获得10
22秒前
Yao发布了新的文献求助30
23秒前
二十七完成签到 ,获得积分10
23秒前
GAOBIN000发布了新的文献求助10
24秒前
腼腆的恶天完成签到,获得积分10
25秒前
科研通AI5应助qq采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256