亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An expandable machine learning-optimization framework to sequential decision-making

背包问题 数学优化 计算机科学 启发式 一般化 解算器 最优化问题 人工神经网络 整数规划 人工智能 算法 数学 数学分析
作者
Dogacan Yilmaz,İ. Esra Büyüktahtakın
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:314 (1): 280-296 被引量:5
标识
DOI:10.1016/j.ejor.2023.10.045
摘要

We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder–decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
量子星尘发布了新的文献求助10
38秒前
50秒前
1分钟前
gexzygg发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助liwen采纳,获得10
1分钟前
Cx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
liwen发布了新的文献求助10
2分钟前
George发布了新的文献求助10
2分钟前
2分钟前
2分钟前
George完成签到,获得积分10
2分钟前
吴端完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
情怀应助玛卡巴卡采纳,获得10
3分钟前
喻初原完成签到 ,获得积分10
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
3分钟前
爆米花应助斯提亚拉采纳,获得10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
斯提亚拉发布了新的文献求助10
4分钟前
天天快乐应助Tree_QD采纳,获得10
4分钟前
斯提亚拉完成签到,获得积分10
4分钟前
5分钟前
吴开珍完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
烟花应助xxywmt采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554932
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512779
邀请新用户注册赠送积分活动 1487518
关于科研通互助平台的介绍 1458482