亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An expandable machine learning-optimization framework to sequential decision-making

背包问题 数学优化 计算机科学 启发式 一般化 解算器 最优化问题 人工神经网络 整数规划 人工智能 算法 数学 数学分析
作者
Dogacan Yilmaz,İ. Esra Büyüktahtakın
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:314 (1): 280-296 被引量:5
标识
DOI:10.1016/j.ejor.2023.10.045
摘要

We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder–decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jessica完成签到,获得积分10
9秒前
称心誉发布了新的文献求助10
9秒前
21秒前
小小鹅发布了新的文献求助10
24秒前
VDC应助科研通管家采纳,获得30
26秒前
小小鹅完成签到,获得积分10
31秒前
39秒前
领导范儿应助revolver采纳,获得10
41秒前
研友_nVWP2Z完成签到 ,获得积分10
45秒前
滴滴如玉完成签到,获得积分10
51秒前
吐丝麵包完成签到 ,获得积分10
53秒前
55秒前
Lucas应助阿萨大大采纳,获得30
55秒前
57秒前
啊大大完成签到,获得积分10
59秒前
Invincible完成签到 ,获得积分10
1分钟前
1分钟前
田様应助好运来采纳,获得10
1分钟前
1分钟前
面条完成签到,获得积分10
1分钟前
1分钟前
fxtx1234发布了新的文献求助30
1分钟前
1分钟前
1分钟前
阿萨大大发布了新的文献求助30
1分钟前
Trailblazer完成签到,获得积分10
1分钟前
清脆代桃完成签到 ,获得积分10
1分钟前
YafishYc发布了新的文献求助10
1分钟前
共享精神应助不汐汐采纳,获得10
1分钟前
1分钟前
revolver发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2024完成签到,获得积分10
2分钟前
莱莱完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344111
求助须知:如何正确求助?哪些是违规求助? 2971140
关于积分的说明 8646629
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451715
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661788