亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intra- and Inter-Modal Graph Attention Network and Contrastive Learning for SAR and Optical Image Registration

计算机科学 人工智能 图形 模式识别(心理学) 图像配准 卷积神经网络 特征提取 背景(考古学) 计算机视觉 图像(数学) 理论计算机科学 生物 古生物学
作者
Xin Hu,Yan Wu,Xingyu Liu,Zhikang Li,Zhifei Yang,Ming Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:3
标识
DOI:10.1109/tgrs.2023.3328368
摘要

The registration of synthetic aperture radar (SAR) and optical images is challenging due to their significant radiometric and geometric differences. Recently, popular registration algorithms based on convolutional neural networks (CNNs) have been limited to extracting local features, resulting in low registration accuracy. In this article, we propose a novel intra- and inter-modal graph attention network and contrastive learning (I2M-GAN&CL) for SAR and optical image registration to solve this problem. First, the graph construction is conducted according to positional encoding (PE), local features, and $k$ -nearest neighbor (KNN) edges of keypoints from SAR and optical images. Second, based on the local features extracted by CNNs, an intra- and inter-modal graph attention network (I2MGAN) is designed. The I2MGAN mines context information and extracts global features shared between SAR and optical images, mitigating the influence of geometric and radiometric differences on registration results. The graph cross-attention (GCA) layer in I2MGAN extracts global features shared between the two images via message passing between nodes across graphs. Subsequently, the graph self-attention (GSA) layer in I2MGAN aggregates context information by conveying messages between nodes in one graph. Finally, a novel intra- and inter-modal contrastive learning (I2MCL) strategy is developed. This strategy conducts the contrastive learning of local and global features within and across modalities to explore feature similarity and increase the number of detected matching point pairs. Experimental results on the publicly available OS dataset demonstrate that the number of matching point pairs and registration accuracy of the proposed algorithm outperforms existing state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助dali采纳,获得10
2秒前
SYLH应助qwq采纳,获得10
7秒前
wupeilin0完成签到 ,获得积分10
8秒前
Orange应助PrayOne采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
lwww应助科研通管家采纳,获得10
11秒前
13秒前
dali完成签到,获得积分20
13秒前
dali发布了新的文献求助10
16秒前
23秒前
29秒前
小二郎完成签到 ,获得积分10
30秒前
领导范儿应助wf采纳,获得10
38秒前
ss完成签到 ,获得积分10
41秒前
42秒前
43秒前
43秒前
PrayOne发布了新的文献求助10
48秒前
春天的粥完成签到 ,获得积分10
49秒前
50秒前
MM11111完成签到,获得积分10
52秒前
warry发布了新的文献求助10
56秒前
57秒前
1分钟前
fly完成签到 ,获得积分10
1分钟前
warry完成签到,获得积分10
1分钟前
1分钟前
以太橘发布了新的文献求助10
1分钟前
柠檬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Jasper应助以太橘采纳,获得10
1分钟前
1分钟前
丘比特应助ma采纳,获得10
1分钟前
jiabaoyu完成签到 ,获得积分10
1分钟前
1分钟前
xiaohongmao完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387