Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107299-107299 被引量:17
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助liu1900ab采纳,获得10
刚刚
1秒前
1秒前
ZZY发布了新的文献求助10
1秒前
Evelyn完成签到,获得积分0
1秒前
2秒前
科研小白完成签到,获得积分10
2秒前
善学以致用应助铃铃铛采纳,获得10
2秒前
小Z发布了新的文献求助10
3秒前
WYT发布了新的文献求助10
3秒前
3秒前
科研完成签到,获得积分10
3秒前
韩笑发布了新的文献求助10
3秒前
韩1234发布了新的文献求助10
4秒前
拉长的鼠标完成签到,获得积分20
4秒前
Mrsummer发布了新的文献求助10
4秒前
QYN完成签到,获得积分10
4秒前
黎明发布了新的文献求助10
4秒前
qqq发布了新的文献求助10
5秒前
5秒前
无花果应助xiaomeng采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助燕海雪采纳,获得10
5秒前
cara完成签到,获得积分10
5秒前
王括发布了新的文献求助10
5秒前
烟花应助工作还是工作采纳,获得10
6秒前
6秒前
kysl完成签到 ,获得积分10
7秒前
虚幻诗柳完成签到,获得积分10
7秒前
xky200125完成签到 ,获得积分10
7秒前
7秒前
SHAO完成签到,获得积分0
7秒前
啊啊啊啊发布了新的文献求助10
8秒前
嘎嘎嘎发布了新的文献求助10
8秒前
自由保温杯应助michael采纳,获得30
9秒前
9秒前
负责的井发布了新的文献求助10
9秒前
夕荀发布了新的文献求助10
9秒前
林祎民完成签到 ,获得积分10
10秒前
Lmding发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006