Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107299-107299 被引量:8
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西蜀小吏发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
zhangjianan完成签到,获得积分10
2秒前
浮游应助59采纳,获得10
2秒前
耿海旭发布了新的文献求助10
4秒前
旅行者完成签到,获得积分10
5秒前
5秒前
Qo日不落o发布了新的文献求助10
6秒前
6秒前
Singularity发布了新的文献求助10
6秒前
8秒前
耶啵完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助150
10秒前
12秒前
陈陈完成签到 ,获得积分10
12秒前
yuyyy完成签到,获得积分20
13秒前
北沐发布了新的文献求助10
14秒前
Zoe013完成签到 ,获得积分10
15秒前
Mxaxxxx发布了新的文献求助10
15秒前
领导范儿应助任怡采纳,获得10
17秒前
water完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
20秒前
蓝胖子完成签到,获得积分10
20秒前
天神完成签到,获得积分10
20秒前
22秒前
宋映梦完成签到 ,获得积分10
22秒前
23秒前
VioletRyu发布了新的文献求助10
23秒前
舒服的尔蓝完成签到,获得积分10
24秒前
小鹏哥完成签到,获得积分10
24秒前
段落落发布了新的文献求助10
25秒前
感动芷珊完成签到 ,获得积分10
25秒前
阿楚发布了新的文献求助10
25秒前
kk119发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408