亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107299-107299 被引量:17
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lrangrang发布了新的文献求助10
2秒前
caca完成签到,获得积分0
3秒前
10秒前
Lrangrang完成签到,获得积分10
12秒前
无问发布了新的文献求助10
14秒前
15秒前
19秒前
elliotzzz发布了新的文献求助10
19秒前
科研废柴完成签到,获得积分10
23秒前
26秒前
浮游应助wyuxilong采纳,获得10
27秒前
29秒前
丽优发布了新的文献求助10
33秒前
DPH完成签到 ,获得积分10
43秒前
yyds完成签到,获得积分0
48秒前
搞科研的肥宅吴完成签到,获得积分10
51秒前
elliotzzz发布了新的文献求助10
55秒前
1分钟前
JamesPei应助过氧化氢采纳,获得30
1分钟前
浮游应助wyuxilong采纳,获得10
1分钟前
1分钟前
1分钟前
赵月丽发布了新的文献求助30
1分钟前
1分钟前
1分钟前
浮游应助kcaj采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
zgjc发布了新的文献求助10
1分钟前
希望天下0贩的0应助丽优采纳,获得10
1分钟前
Lucas应助小飞采纳,获得10
1分钟前
2分钟前
过氧化氢发布了新的文献求助10
2分钟前
lyw发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426457
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171843
捐赠科研通 4457954
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435785
关于科研通互助平台的介绍 1413229