Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107299-107299 被引量:8
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liquidwy完成签到,获得积分10
刚刚
伶俐一曲发布了新的文献求助10
刚刚
恶毒的绿辣子夹馍完成签到,获得积分10
1秒前
1秒前
1秒前
小小泽发布了新的文献求助10
1秒前
2秒前
深情安青应助Tsui采纳,获得10
2秒前
清水完成签到 ,获得积分10
4秒前
小宇仔完成签到,获得积分10
4秒前
石会发发布了新的文献求助10
4秒前
球球发布了新的文献求助10
4秒前
远方完成签到 ,获得积分10
5秒前
SciGPT应助臭小子采纳,获得10
5秒前
Miya_han发布了新的文献求助10
6秒前
kassidy发布了新的文献求助10
7秒前
8秒前
Owen应助王晓梅采纳,获得10
8秒前
Orange应助学习通采纳,获得10
9秒前
10秒前
Singularity应助专注乌冬面采纳,获得10
10秒前
yznfly应助小徐采纳,获得20
10秒前
量子星尘发布了新的文献求助10
11秒前
北风发布了新的文献求助10
11秒前
球球完成签到,获得积分10
12秒前
13秒前
她与星辰皆失完成签到 ,获得积分10
14秒前
小本本发布了新的文献求助10
15秒前
17秒前
健忘曼冬发布了新的文献求助10
18秒前
猪猪发布了新的文献求助30
19秒前
大模型应助无限映波采纳,获得10
19秒前
19秒前
20秒前
21秒前
桐桐应助grace采纳,获得10
22秒前
22秒前
诺贝尔候选人完成签到 ,获得积分10
23秒前
556应助仲达采纳,获得10
23秒前
boshi发布了新的文献求助10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305