Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107299-107299 被引量:17
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
善学以致用应助zxcv采纳,获得10
刚刚
pjxxx完成签到 ,获得积分10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得20
刚刚
元谷雪应助科研通管家采纳,获得10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
小铭同学完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Zx_1993应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
Carly发布了新的文献求助10
1秒前
负阳氧应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
罗大壮发布了新的文献求助10
1秒前
1秒前
王二哈完成签到,获得积分10
1秒前
2秒前
飞快的代天完成签到,获得积分10
2秒前
薛晓博完成签到,获得积分10
2秒前
3秒前
4秒前
yz完成签到,获得积分10
4秒前
爱科研的小多肉完成签到,获得积分10
5秒前
鲤鱼枫发布了新的文献求助10
5秒前
饱满跳跳糖完成签到,获得积分10
5秒前
aDou完成签到 ,获得积分10
6秒前
6秒前
时光行者发布了新的文献求助10
6秒前
科研欣路完成签到,获得积分10
6秒前
Cloud完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5358592
求助须知:如何正确求助?哪些是违规求助? 4489655
关于积分的说明 13974905
捐赠科研通 4391506
什么是DOI,文献DOI怎么找? 2412486
邀请新用户注册赠送积分活动 1405068
关于科研通互助平台的介绍 1379690