Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107299-107299 被引量:17
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺旺完成签到,获得积分10
3秒前
诺贝尔状获得者完成签到,获得积分10
4秒前
5秒前
xxl完成签到,获得积分10
5秒前
王欣完成签到 ,获得积分10
6秒前
6秒前
王源源发布了新的文献求助10
6秒前
大力怀亦完成签到,获得积分20
6秒前
7秒前
顺心剑心发布了新的文献求助10
7秒前
林林完成签到 ,获得积分10
7秒前
ataybabdallah完成签到,获得积分10
8秒前
8秒前
gyhk完成签到,获得积分10
9秒前
SciGPT应助炙热的雪糕采纳,获得10
9秒前
9秒前
10秒前
11秒前
sam完成签到,获得积分10
11秒前
12秒前
英姑应助yu采纳,获得30
13秒前
玖玖发布了新的文献求助150
14秒前
ky发布了新的文献求助10
14秒前
14秒前
15秒前
现代破茧发布了新的文献求助10
15秒前
mimi发布了新的文献求助30
15秒前
lilili完成签到 ,获得积分10
15秒前
15秒前
科研通AI6应助xiaonanzi1采纳,获得10
16秒前
Lucas应助xiaonanzi1采纳,获得10
16秒前
Hello应助xiaonanzi1采纳,获得10
16秒前
浮游应助诺贝尔状获得者采纳,获得10
16秒前
SWEETYXY发布了新的文献求助10
17秒前
苗条的麦片完成签到,获得积分10
17秒前
17秒前
18秒前
韩倩茹完成签到,获得积分10
18秒前
18秒前
芊子完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283823
求助须知:如何正确求助?哪些是违规求助? 4437576
关于积分的说明 13813988
捐赠科研通 4318377
什么是DOI,文献DOI怎么找? 2370395
邀请新用户注册赠送积分活动 1365780
关于科研通互助平台的介绍 1329225