Monitoring of simultaneous saccharification and fermentation of ethanol by multi-source data deep fusion strategy based on near-infrared spectra and electronic nose signals

计算机科学 电子鼻 人工智能 传感器融合 卷积神经网络 人工神经网络 均方误差 融合 深度学习 模式识别(心理学) 机器学习 数学 统计 语言学 哲学
作者
Hui Jiang,Jihong Deng,Quansheng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107299-107299 被引量:8
标识
DOI:10.1016/j.engappai.2023.107299
摘要

Fuel ethanol represents a future energy trajectory, and the simultaneous saccharification and fermentation (SSF) technique emerges as the principal approach for ethanol production. This scholarly inquiry offers an innovative means to monitor the SSF process for ethanol meticulously. Employing a profound fusion strategy that effectively amalgamates diverse data sources. The convolutional neural network and recurrent neural network (RNN) architectures are thoughtfully crafted and designed to enable autonomous feature self-learning from near-infrared spectra and electronic nose data. These intricately devised networks further implement data fusion strategies at the granular level of features. Ultimately, a deep fusion correction model was devised and rigorously validated using two distinct data sources, namely near-infrared spectroscopy and electronic nose data. The obtained results demonstrate a discernible improvement in the overall predictive accuracy of the model when employing the fusion feature strategy, surpassing the model constructed solely on a single technical data source. Regarding the monitoring of ethanol content, the optimal RNN fusion model exhibited remarkable performance metrics, with a root mean square error of prediction (RMSEP) value of 3.2265, a coefficient of determination (R2) value of 0.9880, and a relative percent deviation (RPD) value of 9.2662. In terms of monitoring glucose content, the optimal RNN fusion model also demonstrated commendable performance, with the following respective parameters: RMSEP was 3.2770, R2 was 0.9840, and RPD was 8.0085. The overall results indicate that the multi-sensor data fusion strategy not only improves the performance of the model but also provides valuable insights into the fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjx发布了新的文献求助10
刚刚
刚刚
平淡映易发布了新的文献求助10
刚刚
123完成签到,获得积分20
1秒前
2秒前
2秒前
充电宝应助zhoutian采纳,获得30
2秒前
斯文败类应助薰衣草采纳,获得10
2秒前
sunny发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
459954发布了新的文献求助10
3秒前
shentx完成签到,获得积分10
5秒前
wxz1998完成签到,获得积分10
6秒前
小孟完成签到 ,获得积分20
6秒前
丘比特应助文艺宛筠采纳,获得10
6秒前
7秒前
猪宝大王发布了新的文献求助10
7秒前
王超超发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
传奇3应助xiaohuanshen采纳,获得10
9秒前
NexusExplorer应助自觉的凡旋采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
小孟关注了科研通微信公众号
10秒前
11秒前
冤家Gg应助xu采纳,获得10
12秒前
12秒前
yang发布了新的文献求助10
12秒前
1230发布了新的文献求助10
13秒前
13秒前
yangxt-iga发布了新的文献求助10
13秒前
H0000发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4592434
求助须知:如何正确求助?哪些是违规求助? 4006070
关于积分的说明 12403642
捐赠科研通 3683801
什么是DOI,文献DOI怎么找? 2030355
邀请新用户注册赠送积分活动 1063694
科研通“疑难数据库(出版商)”最低求助积分说明 949204