Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction

计算机科学 航程(航空) 记忆 期限(时间) 网格 数据挖掘 空间分析 时间尺度 人工智能 地质学 遥感 生物 复合材料 量子力学 几何学 物理 数学 数学教育 材料科学 生态学
作者
Yan Liu,Bin Guo,Jingxiang Meng,Daqing Zhang,Zhiwen Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:2
标识
DOI:10.1109/tkde.2023.3322405
摘要

Traffic prediction is one of the fundamental spatio-temporal prediction tasks in urban computing, which is of great significance to a wide range of applications, e.g., traffic controlling, vehicle scheduling, etc. Recently, with the expansion of the city and the development of public transportation, long-range and long-term spatio-temporal correlations play a more important role in traffic prediction. However, it is challenging to model long-range spatial dependencies and long-term temporal dependencies simultaneously in two aspects: 1) complex influential factors, including spatial, temporal and external factors. 2) multiple spatio-temporal correlations, including long-range and short-range spatial correlations, as well as long-term and short-term temporal correlations. To solve these issues, we propose a spatio-temporal memory augmented multi-level attention network for fine-grained traffic prediction, entitled ST-MAN. Specifically, we design a spatio-temporal memory network to encode and memorize fine-grained spatial information and representative temporal patterns. Then, we propose a multi-level attention network to explicitly model both short-term local spatio-temporal dependencies and long-term global spatio-temporal dependencies at different spatial scales (i.e., grid and region levels) and temporal scales (i.e., daily and weekly levels). In addition, we design an external component that takes external factors and spatial embeddings as inputs to generate location-aware influence of the external factors much more efficiently. Finally, we design an end-to-end framework optimized with the contrastive objective and supervised objective to boost model performance. Empirical experiments over coarse-grained and fine-grained real-world datasets demonstrate the superiority of the ST-MAN model compared to several state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
cdy发布了新的文献求助10
2秒前
阿巴理完成签到,获得积分10
5秒前
5秒前
Daniel完成签到,获得积分10
6秒前
6秒前
LEMONS发布了新的文献求助10
7秒前
学分完成签到 ,获得积分10
7秒前
8秒前
肖肖潘达完成签到,获得积分20
9秒前
9秒前
可爱的函函应助游戏玩家采纳,获得10
10秒前
哎呦喂完成签到 ,获得积分10
11秒前
11秒前
12秒前
研友_VZG7GZ应助A灰机采纳,获得10
16秒前
colorful发布了新的文献求助10
16秒前
轻松的纸鹤完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
汉堡包应助LEMONS采纳,获得10
21秒前
LL发布了新的文献求助10
22秒前
李健应助与山采纳,获得10
23秒前
游戏玩家发布了新的文献求助10
23秒前
周星星完成签到,获得积分10
25秒前
25秒前
Hello应助清水采纳,获得10
25秒前
何征结发布了新的文献求助10
25秒前
飘逸若蕊发布了新的文献求助10
25秒前
26秒前
科研通AI2S应助SEAMUS采纳,获得10
26秒前
酷波er应助SEAMUS采纳,获得10
26秒前
0℃发布了新的文献求助10
26秒前
luu发布了新的文献求助10
26秒前
27秒前
晴月发布了新的文献求助10
27秒前
31秒前
游戏玩家完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112