Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction

计算机科学 航程(航空) 记忆 期限(时间) 网格 数据挖掘 空间分析 编码 人工智能 地质学 几何学 材料科学 化学 复合材料 数学教育 数学 物理 基因 遥感 量子力学 生物化学
作者
Yan Liu,Bin Guo,Jingxiang Meng,Daqing Zhang,Zhiwen Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (6): 2643-2658 被引量:3
标识
DOI:10.1109/tkde.2023.3322405
摘要

Traffic prediction is one of the fundamental spatio-temporal prediction tasks in urban computing, which is of great significance to a wide range of applications, e.g., traffic controlling, vehicle scheduling, etc. Recently, with the expansion of the city and the development of public transportation, long-range and long-term spatio-temporal correlations play a more important role in traffic prediction. However, it is challenging to model long-range spatial dependencies and long-term temporal dependencies simultaneously in two aspects: 1) complex influential factors, including spatial, temporal and external factors. 2) multiple spatio-temporal correlations, including long-range and short-range spatial correlations, as well as long-term and short-term temporal correlations. To solve these issues, we propose a spatio-temporal memory augmented multi-level attention network for fine-grained traffic prediction, entitled ST-MAN. Specifically, we design a spatio-temporal memory network to encode and memorize fine-grained spatial information and representative temporal patterns. Then, we propose a multi-level attention network to explicitly model both short-term local spatio-temporal dependencies and long-term global spatio-temporal dependencies at different spatial scales (i.e., grid and region levels) and temporal scales (i.e., daily and weekly levels). In addition, we design an external component that takes external factors and spatial embeddings as inputs to generate location-aware influence of the external factors much more efficiently. Finally, we design an end-to-end framework optimized with the contrastive objective and supervised objective to boost model performance. Empirical experiments over coarse-grained and fine-grained real-world datasets demonstrate the superiority of the ST-MAN model compared to several state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lagertha发布了新的文献求助10
刚刚
jf完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
友好旭尧完成签到,获得积分10
4秒前
不咸完成签到,获得积分10
4秒前
6秒前
瀼瀼完成签到,获得积分10
7秒前
9秒前
10秒前
Lucas应助logitech采纳,获得10
11秒前
12秒前
QQ发布了新的文献求助10
13秒前
沉静的乘风完成签到,获得积分10
13秒前
14秒前
14秒前
17秒前
17秒前
ED应助科研通管家采纳,获得30
18秒前
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
FanFan应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
lagertha完成签到,获得积分10
19秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
19秒前
SUIRIGO发布了新的文献求助10
20秒前
yeye完成签到,获得积分10
21秒前
logitech发布了新的文献求助10
22秒前
23秒前
Chelry发布了新的文献求助10
26秒前
王sir完成签到,获得积分10
27秒前
logitech完成签到,获得积分20
28秒前
行走的土豆完成签到,获得积分10
28秒前
李紫硕发布了新的文献求助10
30秒前
猪猪hero应助高大草莓采纳,获得10
30秒前
零知识发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547