亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global and cross-modal feature aggregation for multi-omics data classification and application on drug response prediction

计算机科学 特征(语言学) 特征学习 判别式 人工智能 情态动词 机器学习 模式 特征选择 模式识别(心理学) 数据挖掘 社会科学 哲学 语言学 化学 社会学 高分子化学
作者
Xiao Zheng,Minhui Wang,Kai Huang,En Zhu
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102077-102077 被引量:26
标识
DOI:10.1016/j.inffus.2023.102077
摘要

With rapid development of single-cell multi-modal sequencing technologies, more and more multi-omics data come into being and provide a unique opportunity for the identification of distinct cell types at the single-cell level. Therefore, it is important to integrate different modalities which are with high-dimensional features for boosting final multi-omics data classification performance. However, existing multi-omics data classification methods mainly focus on exploiting the complementary information of different modalities, while ignoring the learning confidence and cross-modal sample relationship during information fusion. In this paper, we propose a multi-omics data classification network via global and cross-modal feature aggregation, referred to as GCFANet. On one hand, considering that a large number of feature dimensions in different modalities could not contribute to final classification performance but disturb the discriminability of different samples, we propose a feature confidence learning mechanism to suppress some redundant features, as well as enhancing the expression of discriminative feature dimensions in each modality. On the other hand, in order to capture the inherent sample structure information implied in each modality, we design a graph convolutional network branch to learn the corresponding structure preserved feature representation. Then the modal-specific feature representations are concatenated and input to a transformer induced global and cross-modal feature aggregation module for learning consensus feature representation from different modalities. In addition, the consensus feature representation used for final classification is enhanced via a view-specific consistency preserved contrastive learning strategy. Extensive experiments on four multi-omics datasets are conducted to demonstrate the efficacy of the proposed GCFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
BowieHuang应助大鸟依人采纳,获得10
5秒前
10秒前
嘟嘟嘟嘟发布了新的文献求助30
13秒前
风起_完成签到 ,获得积分10
35秒前
健壮的鑫鹏完成签到,获得积分10
51秒前
江夏清完成签到,获得积分10
51秒前
调皮千兰发布了新的文献求助10
57秒前
积极凌兰完成签到 ,获得积分10
1分钟前
Willow完成签到,获得积分10
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
sunfield2014发布了新的文献求助10
2分钟前
2分钟前
2分钟前
天天快乐应助sunfield2014采纳,获得10
2分钟前
天天快乐应助sunfield2014采纳,获得10
2分钟前
烟花应助sunfield2014采纳,获得10
2分钟前
李健应助sunfield2014采纳,获得10
2分钟前
在水一方应助sunfield2014采纳,获得10
2分钟前
斯文败类应助sunfield2014采纳,获得30
2分钟前
脑洞疼应助sunfield2014采纳,获得10
2分钟前
打打应助sunfield2014采纳,获得10
2分钟前
小二郎应助sunfield2014采纳,获得10
2分钟前
大个应助sunfield2014采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
一道光发布了新的文献求助30
3分钟前
iShine完成签到 ,获得积分10
3分钟前
一道光完成签到,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Rn完成签到 ,获得积分0
4分钟前
派大星完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561466
求助须知:如何正确求助?哪些是违规求助? 4646576
关于积分的说明 14678674
捐赠科研通 4587855
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461500