Conditional feature generation for transductive open-set recognition via dual-space consistent sampling

判别式 初始化 人工智能 计算机科学 特征(语言学) 采样(信号处理) 特征向量 模式识别(心理学) 基线(sea) 班级(哲学) 集合(抽象数据类型) 机器学习 计算机视觉 哲学 语言学 海洋学 滤波器(信号处理) 程序设计语言 地质学
作者
Jiayin Sun,Qiulei Dong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110046-110046 被引量:2
标识
DOI:10.1016/j.patcog.2023.110046
摘要

Open-set recognition (OSR) aims to simultaneously detect unknown-class samples and classify known-class samples. Most of the existing OSR methods are inductive methods, which generally suffer from the domain shift problem that the learned model from the known-class domain might be unsuitable for the unknown-class domain. Addressing this problem, inspired by the success of transductive learning for alleviating the domain shift problem in many other visual tasks, we propose an Iterative Transductive OSR framework, called IT-OSR, which implements three explored modules iteratively, including a reliability sampling module, a feature generation module, and a baseline update module. Specifically at the initialization stage, a baseline method, which could be an arbitrary inductive OSR method, is used for assigning pseudo labels to the test samples. At the iteration stage, based on the consistency of the assigned pseudo labels between the output/logit space and the latent feature space of the baseline method, a dual-space consistent sampling approach is presented in the reliability sampling module for sampling some reliable ones from the test samples. Then in the feature generation module, a conditional dual-adversarial generative network is designed to generate discriminative features of both known and unknown classes. This generative network employs two discriminators for implementing fake/real and known/unknown-class discriminations respectively. And it is trained by jointly utilizing the test samples with their pseudo labels selected in the reliability sampling module and the labeled training samples. Finally in the baseline update module, the above baseline method is updated/re-trained for sample re-prediction by jointly utilizing the generated features, the selected test samples with pseudo labels, and the training samples. Extensive experimental results on both the standard-dataset and the cross-dataset settings demonstrate that the derived transductive methods, by introducing two typical inductive OSR methods into the proposed IT-OSR framework, achieve better performances than 19 state-of-the-art methods in most cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气靳发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
WsomF发布了新的文献求助30
2秒前
2秒前
Nan关闭了Nan文献求助
3秒前
这是昵称完成签到,获得积分10
3秒前
橘23478562发布了新的文献求助10
4秒前
第八号当铺完成签到,获得积分10
4秒前
4秒前
打打应助谷粱紫槐采纳,获得10
5秒前
6秒前
小顾完成签到 ,获得积分10
7秒前
8秒前
yahonyoyoyo发布了新的文献求助10
9秒前
10秒前
fafafa发布了新的文献求助10
10秒前
10秒前
未来的心理学家完成签到 ,获得积分10
11秒前
穆清发布了新的文献求助50
12秒前
炎星语发布了新的文献求助10
12秒前
爱撒娇的砖头完成签到,获得积分10
13秒前
13秒前
Fannie完成签到,获得积分10
13秒前
纪言七许完成签到 ,获得积分10
14秒前
huang发布了新的文献求助10
14秒前
FashionBoy应助hanxi采纳,获得10
14秒前
漾漾完成签到,获得积分10
15秒前
科研通AI6.1应助yahonyoyoyo采纳,获得10
15秒前
Lucas应助洁净的士晋采纳,获得10
15秒前
大个应助学术蛀虫采纳,获得20
16秒前
16秒前
骆驼林子完成签到 ,获得积分10
16秒前
科研通AI6.1应助淡然从雪采纳,获得10
16秒前
Hhong发布了新的文献求助10
17秒前
17秒前
yao学渣完成签到 ,获得积分10
18秒前
18秒前
Alan完成签到,获得积分10
19秒前
王大帅哥完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734318
求助须知:如何正确求助?哪些是违规求助? 5353475
关于积分的说明 15326692
捐赠科研通 4879069
什么是DOI,文献DOI怎么找? 2621634
邀请新用户注册赠送积分活动 1570768
关于科研通互助平台的介绍 1527666