Conditional feature generation for transductive open-set recognition via dual-space consistent sampling

判别式 初始化 人工智能 计算机科学 特征(语言学) 采样(信号处理) 特征向量 模式识别(心理学) 基线(sea) 班级(哲学) 集合(抽象数据类型) 机器学习 计算机视觉 哲学 语言学 海洋学 滤波器(信号处理) 程序设计语言 地质学
作者
Jiayin Sun,Qiulei Dong
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110046-110046 被引量:2
标识
DOI:10.1016/j.patcog.2023.110046
摘要

Open-set recognition (OSR) aims to simultaneously detect unknown-class samples and classify known-class samples. Most of the existing OSR methods are inductive methods, which generally suffer from the domain shift problem that the learned model from the known-class domain might be unsuitable for the unknown-class domain. Addressing this problem, inspired by the success of transductive learning for alleviating the domain shift problem in many other visual tasks, we propose an Iterative Transductive OSR framework, called IT-OSR, which implements three explored modules iteratively, including a reliability sampling module, a feature generation module, and a baseline update module. Specifically at the initialization stage, a baseline method, which could be an arbitrary inductive OSR method, is used for assigning pseudo labels to the test samples. At the iteration stage, based on the consistency of the assigned pseudo labels between the output/logit space and the latent feature space of the baseline method, a dual-space consistent sampling approach is presented in the reliability sampling module for sampling some reliable ones from the test samples. Then in the feature generation module, a conditional dual-adversarial generative network is designed to generate discriminative features of both known and unknown classes. This generative network employs two discriminators for implementing fake/real and known/unknown-class discriminations respectively. And it is trained by jointly utilizing the test samples with their pseudo labels selected in the reliability sampling module and the labeled training samples. Finally in the baseline update module, the above baseline method is updated/re-trained for sample re-prediction by jointly utilizing the generated features, the selected test samples with pseudo labels, and the training samples. Extensive experimental results on both the standard-dataset and the cross-dataset settings demonstrate that the derived transductive methods, by introducing two typical inductive OSR methods into the proposed IT-OSR framework, achieve better performances than 19 state-of-the-art methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Alex发布了新的文献求助10
刚刚
刚刚
水煮嘎嘎鸭完成签到,获得积分10
1秒前
1秒前
1秒前
可爱的函函应助my采纳,获得10
1秒前
smallsix发布了新的文献求助10
1秒前
Orange应助洋芋粑采纳,获得10
2秒前
21完成签到 ,获得积分10
3秒前
在水一方应助wenjian采纳,获得10
4秒前
4秒前
5秒前
AA发布了新的文献求助10
5秒前
传奇3应助GYH采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
zenabia发布了新的文献求助20
5秒前
今后应助陈123采纳,获得10
6秒前
好旺完成签到,获得积分10
7秒前
7秒前
小二郎应助半凡采纳,获得10
7秒前
Coral完成签到,获得积分10
7秒前
李健的粉丝团团长应助lhx采纳,获得10
8秒前
独特平灵发布了新的文献求助10
8秒前
8秒前
8秒前
艾小晞发布了新的文献求助10
8秒前
Ava应助五五五采纳,获得10
8秒前
orixero应助小毛线采纳,获得10
8秒前
浮游应助再煎熬采纳,获得10
9秒前
9秒前
9秒前
9秒前
samuel发布了新的文献求助10
9秒前
毕长富完成签到,获得积分10
10秒前
10秒前
科研通AI6应助StarSilverSaint采纳,获得30
10秒前
10秒前
酷波er应助贪玩嘉懿采纳,获得10
10秒前
迷走姑娘完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088