清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Conditional feature generation for transductive open-set recognition via dual-space consistent sampling

判别式 初始化 人工智能 计算机科学 特征(语言学) 采样(信号处理) 特征向量 模式识别(心理学) 基线(sea) 班级(哲学) 集合(抽象数据类型) 机器学习 计算机视觉 哲学 地质学 海洋学 滤波器(信号处理) 程序设计语言 语言学
作者
Jiayin Sun,Qiulei Dong
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110046-110046 被引量:2
标识
DOI:10.1016/j.patcog.2023.110046
摘要

Open-set recognition (OSR) aims to simultaneously detect unknown-class samples and classify known-class samples. Most of the existing OSR methods are inductive methods, which generally suffer from the domain shift problem that the learned model from the known-class domain might be unsuitable for the unknown-class domain. Addressing this problem, inspired by the success of transductive learning for alleviating the domain shift problem in many other visual tasks, we propose an Iterative Transductive OSR framework, called IT-OSR, which implements three explored modules iteratively, including a reliability sampling module, a feature generation module, and a baseline update module. Specifically at the initialization stage, a baseline method, which could be an arbitrary inductive OSR method, is used for assigning pseudo labels to the test samples. At the iteration stage, based on the consistency of the assigned pseudo labels between the output/logit space and the latent feature space of the baseline method, a dual-space consistent sampling approach is presented in the reliability sampling module for sampling some reliable ones from the test samples. Then in the feature generation module, a conditional dual-adversarial generative network is designed to generate discriminative features of both known and unknown classes. This generative network employs two discriminators for implementing fake/real and known/unknown-class discriminations respectively. And it is trained by jointly utilizing the test samples with their pseudo labels selected in the reliability sampling module and the labeled training samples. Finally in the baseline update module, the above baseline method is updated/re-trained for sample re-prediction by jointly utilizing the generated features, the selected test samples with pseudo labels, and the training samples. Extensive experimental results on both the standard-dataset and the cross-dataset settings demonstrate that the derived transductive methods, by introducing two typical inductive OSR methods into the proposed IT-OSR framework, achieve better performances than 19 state-of-the-art methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助舒适以松采纳,获得10
8秒前
量子星尘发布了新的文献求助10
12秒前
yys完成签到,获得积分10
39秒前
yys10l完成签到,获得积分10
40秒前
48秒前
优秀的尔风完成签到,获得积分10
54秒前
落红雨完成签到 ,获得积分10
56秒前
Liufgui应助水天一色采纳,获得10
1分钟前
1分钟前
舒适以松发布了新的文献求助10
1分钟前
华仔应助啊哈哈哈采纳,获得10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
啊哈哈哈发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
小丸子完成签到 ,获得积分10
2分钟前
啊哈哈哈完成签到,获得积分10
2分钟前
Liufgui应助乏味采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
新奇完成签到 ,获得积分10
3分钟前
3分钟前
香蕉觅云应助搞怪莫茗采纳,获得10
3分钟前
xz完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
小蝴蝶发布了新的文献求助10
3分钟前
青出于蓝蔡完成签到,获得积分10
3分钟前
乏味发布了新的文献求助10
3分钟前
顾矜应助搞怪莫茗采纳,获得10
3分钟前
亭2007完成签到 ,获得积分10
3分钟前
3分钟前
FashionBoy应助小蝴蝶采纳,获得10
3分钟前
yshj完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015435
求助须知:如何正确求助?哪些是违规求助? 3555358
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012